【題目】在四棱錐中,四邊形是矩形,平面 平面,點(diǎn)分別為、中點(diǎn).

1)求證: 平面

2,求平面DEF與平面所成銳二面角的余弦值.

【答案】1)見(jiàn)解析(2

【解析】試題分析:(I)取中點(diǎn),連接.可證得四邊形是平行四邊形, ,

平面, 平面,有平面

(II)取中點(diǎn),連接,證明,以為原點(diǎn),OA,OP為x,y軸

建立空間直角坐標(biāo)系,用向量法求解即可.

試題解析:(I)證明:取中點(diǎn),連接

在△中,有

分別為、中點(diǎn)

在矩形中, 中點(diǎn)

四邊形是平行四邊形

平面, 平面

平面

(II)取中點(diǎn),連接,設(shè).

四邊形是矩形

平面 平面,平面 平面= , 平面

平面

, , 中點(diǎn)

, , .

故可建立空間直角坐標(biāo)系,如圖所示,則

, , ,

,

,

設(shè)是平面的一個(gè)法向量,則

,即

不妨設(shè),則

易知向量為平面的一個(gè)法向量.

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正三棱柱的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)在線(xiàn)段上是否存在一點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)是以為底邊的等腰三角形,點(diǎn)在直線(xiàn):上.

(1)求邊上的高所在直線(xiàn)的方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),2017年國(guó)慶中秋假日期間,黔東南州共接待游客590.23萬(wàn)人次,實(shí)現(xiàn)旅游收入48.67億元,同比分別增長(zhǎng)44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬(wàn)元),則稱(chēng)為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:

分組

頻數(shù)

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導(dǎo)游的獎(jiǎng)金(單位:萬(wàn)元),與其一年內(nèi)旅游總收入(單位:百萬(wàn)元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎(jiǎng)金;

Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機(jī)抽取6人進(jìn)行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù)

(1)當(dāng)處取得極值時(shí),若關(guān)于x的方程 上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

(2)若對(duì)任意的,總存在,使不等式 成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐及其側(cè)視圖、俯視圖如圖所示.設(shè), 分別為線(xiàn)段的中點(diǎn), 為線(xiàn)段上的點(diǎn),且.

1)證明: 為線(xiàn)段的中點(diǎn);

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

1)求圓心C的坐標(biāo)及半徑r的大;

2)已知不過(guò)原點(diǎn)的直線(xiàn)l與圓C相切,且在x軸、y軸上的截距相等,求直線(xiàn)l的方程;

3)從圓外一點(diǎn)向圓引一條切線(xiàn),切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線(xiàn)與橢圓交于兩點(diǎn),且的周長(zhǎng)為8.

(1)求橢圓的方程;

(2)直線(xiàn)過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案