分析 根據(jù)函數(shù)奇偶性和條件求出函數(shù)是周期為4的周期函數(shù),利用函數(shù)周期性和奇偶性的關(guān)系進行轉(zhuǎn)化即可得到結(jié)論.
解答 解:∵奇函數(shù)f(x)滿足f(x+1)=f(1-x),
∴f(x+1)=f(1-x)=-f(x-1),即有f(x+2)=-f(x),
則f(x+4)=-f(x+2)=f(x),
即函數(shù)f(x)是周期為4的函數(shù),
∵當(dāng)x∈[0,1]時,f(x)=log2(x+1),
∴f(31)=f(32-1)=f(-1)=-f(1)=-log22=-1,
故答案為:-1.
點評 本題主要考查函數(shù)值的計算,根據(jù)條件求出函數(shù)的周期性,利用函數(shù)的奇偶性和周期性進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}+\frac{{4{y^2}}}{81}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{9}=1$ | C. | $\frac{{4{x^2}}}{81}+\frac{y^2}{9}=1$ | D. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值為8 | B. | 是定值8 | C. | 有最大值為6 | D. | 是定值6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(x)的圖象關(guān)于點(1,0)對稱 | B. | f(x)在(0,2)單調(diào)遞減 | ||
C. | y=f(x)的圖象關(guān)于直線x=1對稱 | D. | f(x)在(0,2)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{5}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com