求函數(shù)在區(qū)間[1,3]上的極值。
科目:高中數(shù)學 來源: 題型:解答題
如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,公路兩側(cè)排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設(shè)與所成的小于的角為.
(Ⅰ)求矩形區(qū)域內(nèi)的排管費用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費用及相應(yīng)的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且在區(qū)間內(nèi)存在極值,求整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當時,求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知.
(1)求的極值,并證明:若有;
(2)設(shè),且,,證明:,
若,由上述結(jié)論猜想一個一般性結(jié)論(不需要證明);
(3)證明:若,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)與的圖像都過點,且它們在點處有公共切線.
(1)求函數(shù)和的表達式及在點處的公切線方程;
(2)設(shè),其中,求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是函數(shù)的兩個極值點.
(1)若,,求函數(shù)的解析式;
(2)若,求實數(shù)的最大值;
(3)設(shè)函數(shù),若,且,求函數(shù)在內(nèi)的最小值.(用表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實數(shù)的取值范圍;
(3)設(shè),若對任意的兩個實數(shù)滿足,總存在,使得成立,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com