設x1,x2∈R,常數(shù)a>0,定義運算“⊕”,數(shù)學公式,定義運算“?”,數(shù)學公式.現(xiàn)有x≥0,則動點數(shù)學公式的軌跡方程是________.

y2=4ax(y≥0)
分析:設,根據(jù)新定義運算得出:y2=(x⊕a)-(x?a)=(x+a)2-(x-a)2=4ax,從而得出的軌跡方程即可;
解答:設P(x,y)則,
所以y2=(x⊕a)-(x?a)=(x+a)2-(x-a)2=4ax
又由≥0,
可得P(x,) 的軌跡方程為y2=4ax(y≥0),
軌跡C為頂點在原點,焦點為(a,0)的拋物線在x軸上及第一象限的內的部分;
故答案為:y2=4ax(y≥0).
點評:本題考查抽新定義函數(shù)類型的概念,對于新定義類型問題,在解答時要先充分理解定義才能答題,避免盲目下筆,另外要在充分抓住定義的基礎上,對式子的處理要靈活,各個式子的內在聯(lián)系要充分挖掘出來,可現(xiàn)有結論向上追溯,看看需要哪些條件才能得出結果,再來尋求轉化取得這些條件.屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x1、x2∈R,常數(shù)a>0,定義運算“⊕”:x1⊕x2=(x1+x22,定義運算“?”:x1?x2=(x1-x22;對于兩點A(x1,y1)、B(x2,y2),定義d(AB)=
y1?y2

(1)若x≥0,求動點P(x,
(x⊕a)-(x?a)
) 的軌跡C;
(2)已知直線l1 : y=
1
2
x+1
與(1)中軌跡C交于A(x1,y1)、B(x2,y2)兩點,若
(x1?x2)+(y1?y2)
=8
15
,試求a的值;
(3)在(2)中條件下,若直線l2不過原點且與y軸交于點S,與x軸交于點T,并且與(1)中軌跡C交于不同的兩點P、Q,試求
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2∈R,常數(shù)a>0,定義運算“⊕”,x1x2=(x1+x2)2,定義運算“?”,x1?x2=(x1-x2)2.現(xiàn)有x≥0,則動點P(x,
(x⊕a)-(x?a)
)
的軌跡方程是
y2=4ax(y≥0)
y2=4ax(y≥0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2∈R,常數(shù)a>0,定義運算“⊕”,x1⊕x2=(x1+x22-(x1-x22,若x≥0,則動點P(x,
x⊕a
)的軌跡方程是
y=2
ax
(x≥0)
y=2
ax
(x≥0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2∈R,常數(shù)a>0,定義運算“*”:x1*x2=(x1+x22-(x1-x22
(1)若x≥0,求動點P(x,
x*a
)
的軌跡C的方程;
(2)若a=2,不過原點的直線l與x軸、y軸的交點分別為T,S,并且與(1)中的軌跡C交于不同的兩點P,Q,試求
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2∈R,常數(shù)a>0,定義運算“*”:x1*x2=(x1+x22-(x1-x22
(1)若x≥0,求動點P(x,
x*a
)
的軌跡C的方程;
(2)若a=2,不過原點的直線l與x軸、y軸的交點分別為T,S,并且與(1)中的軌跡C交于不同的兩點P,Q,試求
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
的取值范圍;
(3)設P(x,y)是平面上的任意一點,定義d1(P)=
1
2
(x*x)+(y*y)
,d2(P)
=
1
2
(x-a)*(x-a)
.若在(1)中的軌跡C存在不同的兩點A1,A2,使得d1(Ai)=
a
d2(Ai)(i=1,2)
成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案