精英家教網 > 高中數學 > 題目詳情

在△ABC中,cosA=,cosB=,則△ABC的形狀是

[  ]

A.銳角三角形
B.鈍角三角形
C.直角三角形
D.不能確定
答案:B
解析:

cosA= ,cosB= 都為正可知兩角為銳角,利用直角三角形求正弦

cos(A+B)=cosAcosB-sinAsinB= , ,C為鈍角,所以是鈍角三角形


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

6、在△ABC中,cos(A-B)+sin(A+B)=2,則△ABC的形狀為
等腰直角
三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

3、在△ABC中,cos 2B>cos 2A是A>B的(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,cos(A+C)=-
3
5
,且a,c的等比中項為
35

(1)求△ABC的面積;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,cos(A-C)+2cos2
B
2
=
5
2
,三邊a,b,c成等比數列,求B.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在△ABC中,cos∠ABC=
1
3
,AB=6,AD=2DC,點D在AC邊上.
(Ⅰ)若BC=AC,求sin∠ADB;
(Ⅱ)若BD=4
3
,求BC的長.

查看答案和解析>>

同步練習冊答案