【題目】將函數(shù)y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應的解析式應該是( )
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+ )
C.y=﹣2sin(2x﹣ )
D.y=﹣2sin(2x+ )
科目:高中數(shù)學 來源: 題型:
【題目】正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)S﹣ABCD的底面邊長為2,高為2,E為邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為( )
A.
B.
C.3
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以()表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB= .
(1)求∠C的大。
(2)設角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【山東省實驗中學2017屆高三第一次診斷】已知橢圓:的右焦點,過點且與坐標軸不垂直的直線與橢圓交于,兩點,當直線經(jīng)過橢圓的一個頂點時其傾斜角恰好為.
(1)求橢圓的方程;
(2)設為坐標原點,線段上是否存在點,使得?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【廣東省惠州市2017屆高三上學期第二次調(diào)研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)若直線與點的軌跡有兩個不同的交點和,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知動直線過點,且與圓交于、兩點.
(1)若直線的斜率為,求的面積;
(2)若直線的斜率為,點是圓上任意一點,求的取值范圍;
(3)是否存在一個定點(不同于點),對于任意不與軸重合的直線,都有平分,若存在,求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓 的上、下頂點分別為A,B,點P在橢圓上,且異于點A,B,直線AP,BP與直線 分別交于點M,N,
(1)設直線AP,BP的斜率分別為 ,求證: 為定值;
(2)求線段MN的長的最小值;
(3)當點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】京劇是我國的國粹,是“國家級非物質(zhì)文化遺產(chǎn)”,某機構在網(wǎng)絡上調(diào)查發(fā)現(xiàn)各地京劇票友的年齡服從正態(tài)分布同時隨機抽取位參與某電視臺《我愛京劇》節(jié)目的票友的年齡作為樣本進行分析研究(全部票友的年齡都在內(nèi)),樣本數(shù)據(jù)分別區(qū)間為由此得到如圖所示的頻率分布直方圖.
(Ⅰ) 若求的值;
(Ⅱ)現(xiàn)從樣本年齡在的票友中組織了一次有關京劇知識的問答,每人回答一個問題,答對贏得一臺老年戲曲演唱機,答錯沒有獎品,假設每人答對的概率均為,且每個人回答正確與否相互之間沒有影響,用表示票友們贏得老年戲曲演唱機的臺數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com