已知函數(shù)f(x)=
33x-5
ax2+ax-3
的定義域為R,求a的取值范圍.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把函數(shù)f(x)=
33x-5
ax2+ax-3
的定義域為R轉(zhuǎn)化為對于任意實數(shù)x有ax2+ax-3≠0恒成立.然后分a=0和a≠0討論求解a的范圍.
解答: 解:∵函數(shù)f(x)=
33x-5
ax2+ax-3
的定義域為R,
則對于任意實數(shù)x有ax2+ax-3≠0恒成立.
當(dāng)a=0時顯然有ax2+ax-3≠0;
當(dāng)a≠0時,則需a2+12a<0,解得-12<a<0.
綜上,使函數(shù)f(x)=
33x-5
ax2+ax-3
的定義域為R的實數(shù)a的范圍是(-12,0].
點評:本題考查了函數(shù)的定義域及其求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法和分類討論的數(shù)學(xué)思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)是定義在R上的增函數(shù)且f(x)≠0,對于任意x1,x2∈R都有f(x1+x2)=f(x1)•f(x2
(1)求證:f(x)>0;
(2)求證:f(x1-x2)=
f(x1)
f(x2)
;
(3)若f(1)=2,解不等式f(3x)>4f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),在[2,6]上是減函數(shù),則f(-5)
 
f(3)(填“<”、“>”或“=”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-x
ax
+lnx.
(Ⅰ)當(dāng)a=1時,求f(x)的極值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:lnn>
1
2
+
1
3
+
1
4
+…+
1
n
(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線方程為(m+1)x+(m+2)y+(m+3)=0.
(1)證明:直線恒過定點M;
(2)若直線分別與x軸、y軸的正,負(fù)半軸交于A、B兩點,求△AOB面積的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an是Sn與1的等差中項,數(shù)列{bn}中,b1=2,點P(bn,bn+1)在直線y=x+2上.
(1)求證:數(shù)列{an}是等比數(shù)列,并求通項公式;
(2)求數(shù)列{bn}的通項bn
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=3an-2(n=1,2,…).
(Ⅰ)證明數(shù)列{an}是等比數(shù)列;
(Ⅱ)若bn+1=an+bn(n=1,2,…),且b1=-3,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是各棱長均相等的正四棱錐表面展開圖,T為QS的中點,則在四棱錐中PQ與RT所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

編寫一個程序,輸入梯形的上底、下底和高的值,計算并輸出其面積.

查看答案和解析>>

同步練習(xí)冊答案