直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線數(shù)學(xué)公式(θ為參數(shù))和曲線C2:ρ=1上,則|AB|的最小值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:根據(jù)題目給出的參數(shù)方程和極坐標(biāo)方程,求出兩圓的普通方程,數(shù)形結(jié)合直觀看出曲線上兩點(diǎn)的最短距離為兩圓的圓心距減去兩圓的半徑.
解答:由?
2+②2,得C1:(x-3)2+y2=1 ③
又由ρ=1,得C2:x2+y2=1 ④
因?yàn)锳、B兩點(diǎn)分別在兩圓上,所以A、B兩點(diǎn)的最短距離為兩圓的圓心距減去兩元的半徑,
所以|AB|=
故選A.
點(diǎn)評(píng):本題考查了參數(shù)方程化成普通方程和簡(jiǎn)單曲線的極坐標(biāo)方程,考查了數(shù)形結(jié)合思想,解答此題的關(guān)鍵是能正確化出兩曲線的普通方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點(diǎn),且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
、|
PO
|
|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點(diǎn)Q(-4,3),直線l與圓O交于M、N兩點(diǎn),試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時(shí)直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2)、B(1,1),直線l 經(jīng)過點(diǎn)B且與線段OA相交.則直線 l 傾斜角α的取值范圍是
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,P為直線y=-x-2上一點(diǎn),Q為函數(shù)f(x)=
2x
(x>0)的圖象上一點(diǎn),則線段PQ長(zhǎng)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(-1,0),B(1,0),AE∥BF,且半圓與y軸的交點(diǎn)D在射線AE的反向延長(zhǎng)線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有一個(gè)公共點(diǎn)時(shí),寫出b的取值范圍;當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有兩個(gè)公共點(diǎn)時(shí),寫出b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,不等式組
1≤x+y≤3
-1≤x-y≤1
表示圖形的面積等于( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案