18.“C=5”是“點(2,1)到直線3x+4y+C=0的距離為3”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 利用點到直線的距離公式解出C,即可判斷出結(jié)論.

解答 解:由點(2,1)到直線3x+4y+C=0的距離為3,可得:$\frac{|6+4+C|}{5}$=3,解得C=5或-25.
∴“C=5”是“點(2,1)到直線3x+4y+C=0的距離為3”的充分不必要條件.
故選:B.

點評 本題考查了點到直線的距離公式、簡易邏輯的判斷方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=$\frac{2}{x}$-lnx的零點所在區(qū)間是( 。
A.(3,4)B.(2,3 )C.(1,2 )D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,記函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{2}$ax3-$\frac{3}{2}$x2+$\frac{3}{2}$a2x(a∈R)在x=1處取得極大值,則a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點A(2,m),B(1,2),C(3,1)若$\overrightarrow{AB}$•$\overrightarrow{CB}$=|$\overrightarrow{AC}$|,則實數(shù)m等于(  )
A.1B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某學校甲、乙兩個班各派10名同學參加英語口語比賽,并記錄他們的成績,得到如圖所示的莖葉圖.現(xiàn)擬定在各班中分數(shù)超過本班平均分的同學為“口語王”.
(Ⅰ)記甲班“口語王”人數(shù)為m,乙班“口語王”人數(shù)為n,比較m,n的大;
(Ⅱ)求甲班10名同學口語成績的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=($\frac{1}{3}$) |x|-1的單調(diào)增區(qū)間為(-∞,0)(亦可寫成(-∞,0]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.長方體ABCD-A1B1C1D1中,AB=3,AD=2,CC1=1,一條繩子從A沿著表面拉到C1,則繩子的最短長度為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.函數(shù)f(x)=ax(a>0,a≠1)的圖象經(jīng)過點A(4,16),函數(shù)g(x)=x2+2x+b(b>0).
(1)寫出函數(shù)y=f(x)的解析式;
(2)設x∈[-1,0]時,f(x)>g(x),請寫出b的取值范圍;
(3)設函數(shù)y=f(x)的反函數(shù)y=f-1(x),若當x>0時,函數(shù)y=f-1(x)與y=g(x)至少有一個函數(shù)的函數(shù)值為正實數(shù),求b的取值范圍.

查看答案和解析>>

同步練習冊答案