【題目】已知數(shù)列和的前項和分別為和,且,,,其中為常數(shù).
(1)若,.
①求數(shù)列的通項公式;
②求數(shù)列的通項公式.
(2)若,.求證:.
【答案】(1)①,②(2)見解析.
【解析】
(1)①已知兩等式相加可得是等比數(shù)列,從而可得通項公式,②已知兩等式相減可得的遞推關(guān)系式,湊配成一個新的等比數(shù)列,利用等比數(shù)列的通項公式可求得;
(2)已知兩等式相加可得數(shù)列是等比數(shù)列,就是的前項和,分類求得這個和,在且時用數(shù)學(xué)歸納法證明不等式成立.
(1)若,,則有
由,得:
所以是公比為4的等比數(shù)列,首項,
所以;
由,得:
則
所以是公比為2的等比數(shù)列,首項,
所以,則;
(2)由,得,
∵,,∴數(shù)列是等比數(shù)列,
∴,
時,,不等式左邊,右邊,不等式成立;
時,,
不等式即為,
下面用數(shù)學(xué)歸納法證明:
(i)時,左邊,右邊,左邊右邊,不等式成立,
(ii)假設(shè)時,不等式成立,即,
∵,∴
則時,左邊=,
由歸納假設(shè)左邊,
下面只要證,即證,
再用數(shù)學(xué)歸納法證明:
①時,不等式左邊,右邊,不等式成立,
②假設(shè)()時不等式成立,即 ,
則時,,不等式也成立,
由①②得時,不等式成立,
∴時,不等式成立,
由(i)(ii),原不等式對一切正整數(shù)都成立.
綜上,原不等式得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為F,直線l與C交于M,N兩點.
(1)若l過點F,點M,N到直線y=2的距離分別為d1,d2,且,求l的方程;
(2)若點M的坐標為(0,1),直線m過點M交C于另一點N′,當直線l與m的斜率之和為2時,證明:直線NN′過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機構(gòu)從該省抽取了5個城市,并統(tǒng)計了共享單車的指標和指標,數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標 | 2 | 4 | 5 | 6 | 8 |
指標 | 3 | 4 | 4 | 4 | 5 |
(1)試求與間的相關(guān)系數(shù),并說明與是否具有較強的線性相關(guān)關(guān)系(若,則認為與具有較強的線性相關(guān)關(guān)系,否則認為沒有較強的線性相關(guān)關(guān)系).
(2)建立關(guān)于的回歸方程,并預(yù)測當指標為7時,指標的估計值.
(3)若某城市的共享單車指標在區(qū)間的右側(cè),則認為該城市共享單車數(shù)量過多,對城市的交通管理有較大的影響交通管理部門將進行治理,直至指標在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標為13,則該城市的交通管理部門是否需要進行治理?試說明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】發(fā)展“會員”、提供優(yōu)惠,成為不少實體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動.抽獎返現(xiàn)便是針對“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”不同級別的會員享受不同的優(yōu)惠的一項活動:“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”分別有4次、3次、2次、1次抽獎機會.抽獎機如圖:抽獎?wù)叩谝淮伟聪鲁楠勬I,在正四面體的頂點出現(xiàn)一個小球,再次按下抽獎鍵,小球以相等的可能移向鄰近的頂點之一,再次按下抽獎鍵,小球又以相等的可能移向鄰近的頂點之一……每一個頂點上均有一個發(fā)光器,小球在某點時,該點等可能發(fā)紅光或藍光,若出現(xiàn)紅光則獲得2個單位現(xiàn)金,若出現(xiàn)藍光則獲得3個單位現(xiàn)金.
(1)求“銀卡會員”獲得獎金的分布列;
(2)表示第次按下抽獎鍵,小球出現(xiàn)在點處的概率.
①求,,,的值;
②寫出與關(guān)系式,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,平面ABC是下底面.M是BB1上的點,AB=3,BC=4,AC=5,CC1=7,過三點A、M、C1作截面,當截面周長最小時,截面將三棱柱分成的上、下兩部分的體積比為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計圖.則下列說法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:
①平面;
②四點、、、可能共面;
③若,則平面平面;
④平面與平面可能垂直.其中正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )
A.﹣1B.1C..D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com