若橢圓的兩焦點為(-2,0)和(2,0),且橢圓過點
,則橢圓方程是 ( )
本題考查橢圓的定義,橢圓的標準方程.
根據(jù)定義定義得:
,所以
則
又焦點在x軸上,所以橢圓的標準方程為
故選D
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓的長軸長是短軸長的2倍,則橢圓的離心率 ( )
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設點P(x,y)(xy≠0)是曲線
上的點,下列關系正確的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
:
的左、右焦點分別為
,上頂點為
,過點
與
垂直的直線交
軸負半軸于點
,且
,若過
,
,
三點的圓恰好與直線
:
相切. 過定點
的直線
與橢圓
交于
,
兩點(點
在點
,
之間).
(Ⅰ)求橢圓
的方程;
(Ⅱ)設直線
的斜率
,在
軸上是否存在點
,使得以
,
為鄰邊的平行四邊形是菱形. 如果存在,求出
的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實數(shù)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
以橢圓
內的點
為中點的弦所在直線方程 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知橢圓
:
的長軸長是短軸長的
倍,
,
是它的左,右焦點.
(1)若
,且
,
,求
、
的坐標;
(2)在(1)的條件下,過動點
作以
為圓心、以1為半徑的圓的切線
(
是切點),且使
,求動點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
過橢圓
的右焦點F作斜率為
與橢圓交于A、B兩點,且坐標原點O到直線l的距離d滿足:
(I)證明點A和點B分別在第一、三象限;
(II)若
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
方程
表示橢圓,則實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知方向向量為
的右焦點,且橢圓的離心率為
.
求橢圓C的方程;
若已知點D(3,0),點M,N是橢圓C上不重合的兩點,且
,
求實數(shù)
的取值范圍.
查看答案和解析>>