17.設(shè)P={x|x≤1},Q={x|-1≤x≤2},那么P∩Q=( 。
A.{x|-1<x<1}B.{x|-1≤x<2}C.{x|1≤x<2}D.{x|-1≤x≤1}

分析 直接利用交集的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:P={x|x≤1},Q={x|-1≤x≤2},那么P∩Q={x|-1≤x≤1}.
故選:D.

點(diǎn)評(píng) 本題考查交集的運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等比數(shù)列{an}的公比為q=2,且a1a2a3…a30=330,則a1a4a7…a28=${(\frac{3}{2})^{10}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.化簡(jiǎn):
(1)$\root{6}{{{{(\frac{{8{a^3}}}{{125{b^3}}})}^4}}}$•($\frac{{8{a^{-3}}}}{{27{b^6}}}$)${\;}^{-\frac{1}{3}}}$;
(2)(lg2)•[(ln$\sqrt{e}$)-1+log${\;}_{\sqrt{2}}}$5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|-4≤x-6≤0},集合B={x|2x-6≥3-x}.
(1)求∁R(A∩B);
(2)若C={x|x≤a},且A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.不等式x>$\frac{1}{x}$的解集為( 。
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},則∁UA={2,4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{{x^2}+1}}{x}$(x≠0).
(1)證明函數(shù)f(x)為奇函數(shù);
(2)判斷函數(shù)f(x)在[1,+∞)上的單調(diào)性,并說(shuō)明理由;
(3)若x∈[-2,-3],求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=3x2+m(m-6)x+5.
(1)解關(guān)于m的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)<n的解集為(-1,4),求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡(jiǎn)圖,寫出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個(gè)解,試說(shuō)出實(shí)數(shù)m的取值范圍.(只要寫出結(jié)果,不用給出證明過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案