【題目】對任意x∈R,函數(shù)y=(k2﹣k﹣2)x2﹣(k﹣2)x﹣1的圖象始終在x軸下方,求實數(shù)k的取值范圍.
【答案】解:由k2﹣k﹣2=0,解得:k=2或k=﹣1,
k=2時,y=﹣1,圖象始終在x軸下方,符合題意,
k=﹣1時,y=3x﹣1,x> 時,不合題意,
若k2﹣k﹣2≠0,則函數(shù)是二次函數(shù),
若函數(shù)的圖象始終在x軸下方,
則 ,
解得:﹣ <k<2,
綜上,k∈ .
【解析】①當二次項系數(shù)為零時,可知k=2時符合題意,②當二次項系數(shù)不為零時,要使得圖象始終在x軸下方,只需要拋物線開口向下,與x軸無交點即可,列出不等式,得到k的取值范圍.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì),掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U={x∈N*|x≤9},(UA)∩B={1,6},A∩(UB)={2,3},(UA)∩(UB)={4,5,7,8},則B= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域為( )
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時,有 >0.
(Ⅰ)證明f(x)在[﹣1,1]上是增函數(shù);
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1對x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(用空間向量坐標表示解答)如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點.
(1)求證:AC1∥面B1CD
(2)求直線AA1與面B1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用M[A]表示非空集合A中的元素個數(shù),記|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記關(guān)于x的不等式 的解集為P,不等式|x+2|<3的解集為Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知ABCD﹣A1B1C1D1為正方體,① ;② ;③向量 與向量 的夾角是60°;④正方體ABCD﹣A1B1C1D1的體積為 .其中正確的命題是(寫出所有正確命題編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com