【題目】已知數(shù)列中,,,的前項(xiàng)和為,且滿足().
(1)試求數(shù)列的通項(xiàng)公式;
(2)令,是的前項(xiàng)和,證明:;
(3)證明:對(duì)任意給定的,均存在,使得時(shí),(2)中的恒成立.
【答案】(1);(2)證明見解析;(3)證明見解析
【解析】
(1)由題意首先整理所給的遞推關(guān)系式,然后利用累加法即可求得數(shù)列的通項(xiàng)公式;
(2)結(jié)合(1)中的通項(xiàng)公式裂項(xiàng)求和求得數(shù)列的前項(xiàng)和即可證得題中的結(jié)論;
(3)首先求解不等式得到實(shí)數(shù)n的取值范圍,然后結(jié)合所得的結(jié)果給出的值即可.
(1)由題意知(n≥3),
即(n≥3),
,n≥3.
檢驗(yàn)知n=1,2時(shí),結(jié)論也成立,
故.
(2) 由于bn===
故
,
所以,.
(3)若Tn>m,其中m∈(0,),則有>m,
則2n+1>,
故,
取(其中[x]表示不超過x的最大整數(shù)),
則當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列(公差不為零)和等差數(shù)列,如果關(guān)于的實(shí)系數(shù)方程有實(shí)數(shù)解,那么以下九個(gè)方程()中,無(wú)實(shí)數(shù)解的方程最多有( )
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,對(duì)任意的,都有.
(1)求數(shù)列的遞推公式
(2)數(shù)列滿足,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),問是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)于任意都有,記為數(shù)列的前項(xiàng)和.
(1)計(jì)算的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),若為單調(diào)遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若曲線在點(diǎn)處的切線與軸垂直,求實(shí)數(shù)的值;
(2)若在處取得極大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,.
(1)求證:平面ABCD;
(2)若,點(diǎn)F在EC上,且滿足EF=2FC,求二面角F—AD—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com