若不等式x2-ax+4<0的解集為(1,4),求a=
5
5
分析:不等式x2-ax+4<0的解集為(1,4),故1,4是方程x2-ax+4=0的兩個根,由根與系數(shù)的關(guān)系求出a可得.
解答:解:由題意不等式x2-ax+4<0的解集是(1,4),故1,4是方程x2-ax+4=0的兩個根,
∴1+4=a,∴a=5,
故答案為:5.
點評:本題考查的知識點是一元二次不等式的解法,及三個二次之間的關(guān)系,其中根據(jù)三個二次之間的關(guān)系求出a,b的值,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

13、若不等式x2-ax<0的解集是{x|0<x<1},則a=
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-ax-b<0的解集為{x|2<x<3},則a+b=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2+ax+a>0恒成立,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-2x+3<0的解集為A,不等式x2+x-6<0的解集為B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集為A∩B,求不等式ax2+x+b<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-ax+1>0恒成立的充分條件是0<x<
1
3
,則實數(shù)a的取值范圍是
(-∞,
10
3
]
(-∞,
10
3
]

查看答案和解析>>

同步練習冊答案