【題目】已知,函數(shù)其中

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),

(i)的取值范圍;

(ii)設(shè)的兩個(gè)零點(diǎn)分別為x1,x2,證明:x1x2>e2

【答案】1)見(jiàn)解析(2(i);(ii)見(jiàn)解析

【解析】

1)求導(dǎo)后,分別在兩種情況下討論導(dǎo)函數(shù)的符號(hào),從而得到單調(diào)區(qū)間;(2(i)將問(wèn)題轉(zhuǎn)化為與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn),通過(guò)求解相切時(shí)的臨界值,得到的取值范圍;(ii)將問(wèn)題轉(zhuǎn)化為證明成立,通過(guò)構(gòu)造函數(shù),證得,從而證得結(jié)論.

(1)函數(shù)的定義域?yàn)?/span>,

①當(dāng)時(shí),,單調(diào)遞增;

②當(dāng)時(shí),由,

則當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減

(2)(i)函數(shù)有兩個(gè)零點(diǎn)即方程有兩個(gè)不同根

轉(zhuǎn)化為函數(shù)與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn)

如圖:

可見(jiàn),若令過(guò)原點(diǎn)且切于函數(shù)圖象的直線斜率為,只需

設(shè)切點(diǎn),所以

,所以,解得

于是,所以

(ii)原不等式

不妨設(shè)

,

,則,于是

設(shè)函數(shù),

求導(dǎo)得:

故函數(shù)上的增函數(shù)

即不等式成立,故所證不等式成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,兩點(diǎn),滿足:,,則的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知圓Cx2+y2-4x=0及點(diǎn)A-1,0),B1,2

1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線l的方程;

2)若圓C上存在兩個(gè)點(diǎn)P,使得PA2+PB2=aa4),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假:

1的必要條件;

2的充要條件;

3)兩個(gè)三角形的兩組對(duì)應(yīng)角相等是這兩個(gè)三角形相似的充要條件;

4)三角形的三條邊滿足勾股定理是這個(gè)三角形為直角三角形的充要條件;

5)在中,重心和垂心重合是為等邊三角形的必要條件;

6)如果點(diǎn)到點(diǎn)的距離相等,則點(diǎn)一定在線段的垂直平分線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線.

(1)當(dāng)時(shí),求曲線在處的切線方程;

2)過(guò)點(diǎn)作曲線的切線,若所有切線的斜率之和為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,,

(I)求的值,由此猜想數(shù)列的通項(xiàng)公式:

(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用五點(diǎn)法畫(huà)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0||<)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+

0

π

2π

x

Asin(ωx+)

0

5

-5

0

1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并求出函數(shù)f(x)的解析式;

2)將y=f(x)的圖象向左平移個(gè)單位,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)-m=0在區(qū)間[0,]上有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】剪紙藝術(shù)是最古老的中國(guó)民間藝術(shù)之一,作為一種鏤空藝術(shù),它能給人以視覺(jué)上以透空的感覺(jué)和藝術(shù)享受.在中國(guó)南北方的剪紙藝術(shù),通過(guò)一把剪刀、一張紙、就可以表達(dá)生活中的各種喜怒哀樂(lè).如圖是一邊長(zhǎng)為1的正方形剪紙圖案,中間黑色大圓與正方形的內(nèi)切圓共圓心,圓與圓之間是相切的,且中間黑色大圓的半徑是黑色小圓半徑的2倍,若在正方形圖案上隨機(jī)取一點(diǎn),則該點(diǎn)取自白色區(qū)域的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案