.橢圓上一點(diǎn)到右準(zhǔn)線的距離為,則該點(diǎn)到左焦點(diǎn)的距離為(  )
A. B. C.D.
A
橢圓上一點(diǎn)P到右準(zhǔn)線的距離為,所以P到右焦點(diǎn)的距離為所以P點(diǎn)到左焦點(diǎn)的距離為10-2=8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右頂點(diǎn)分別為,為短軸的端點(diǎn),△的面積為,離心率是
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)是橢圓上異于,的任意一點(diǎn),直線與直線分別交于,兩點(diǎn),證明:以為直徑的圓與直線相切于點(diǎn) (為橢圓的右焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的右焦點(diǎn)到直線的距離是
A. B.  C.1  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C。
(1)求出C的軌跡方程;
(2)設(shè)直線與C交于A、B兩點(diǎn),k為何值時(shí)?       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知兩點(diǎn),,曲線上的動(dòng)點(diǎn)滿足,直線與曲線交于另一點(diǎn)
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)已知橢圓的焦點(diǎn)是,又過(guò)點(diǎn)
(1)求橢圓的離心率;
(2)又設(shè)點(diǎn)在這個(gè)橢圓上,且,求的余弦的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

中,滿足.若一個(gè)橢圓恰好以為一個(gè)焦點(diǎn),另一個(gè)焦點(diǎn)在線段上,且,均在此橢圓上,則該橢圓的離心率為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知方向向量為的直線l過(guò)橢圓的焦點(diǎn)以及點(diǎn)(0,),直線l與橢圓C交于 A 、B 兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為
(1)求橢圓C的方程
(2)過(guò)左焦點(diǎn)且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),
(O坐標(biāo)原點(diǎn)),求直線m的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓,直線過(guò)橢圓左焦點(diǎn)且不與軸重合, 與橢圓交于,兩點(diǎn),當(dāng)軸垂直時(shí),,若點(diǎn)
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓交于兩點(diǎn),若,求的面積 的取值范圍(為橢圓的右焦點(diǎn))。

查看答案和解析>>

同步練習(xí)冊(cè)答案