已知函數(shù)f(x)=x3+ax2+bx+c圖象上一點(diǎn)M(1,m)處的切線方程為y-2=0,其中a,b,c為常數(shù).
(Ⅰ)函數(shù)f(x)是否存在單調(diào)減區(qū)間?若存在,則求出單調(diào)減區(qū)間(用a表示);
(Ⅱ)若x=1不是函數(shù)f(x)的極值點(diǎn),求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)M對稱.
分析:(Ⅰ)f(x)=x
3+ax
2+bx+c,f′(x)=3x
2+2ax+b,由題意,知m=2,b=-2a-3,c=a+4,
f′(x)=3x2+2ax-(2a+3) =3(x-1)(x+1+),由此進(jìn)行分類討論能求出單調(diào)減區(qū)間.
(Ⅱ)由x=1不是函數(shù)f(x)的極值點(diǎn),a=-3,b=3,c=1,f(x)=x
3-3x
2+3x+1=(x-1)
3+2,設(shè)點(diǎn)P(x
0,y
0)是函數(shù)f(x)的圖象上任一點(diǎn),則y
0=f(x
0)=(x
0-1)
3+2,點(diǎn)p(x
0,y
0)關(guān)于點(diǎn)M(1,2)的對稱點(diǎn)為Q(2-x
0,4-y
0),再由點(diǎn)P的任意性知函數(shù)f(x)的圖象關(guān)于點(diǎn)M對稱.
解答:解:(Ⅰ)f(x)=x
3+ax
2+bx+c,f′(x)=3x
2+2ax+b,(1分)
由題意,知m=2,f(1)=1+a+b+c=2,f′(1)=3+2a+b=0,
即b=-2a-3,c=a+4(2分)
f′(x)=3x2+2ax-(2a+3) =3(x-1)(x+1+),(3分)
1當(dāng)a=-3時(shí),f′(x)=3(x-1)
2≥0,函數(shù)f(x)在區(qū)間(-∞,+∞)上單調(diào)增加,
不存在單調(diào)減區(qū)間;(5分)
2當(dāng)a>-3時(shí),-1-
<1,有
x |
(-∞,-1-) |
(-1-,1) |
(1,+∞) |
f′(x) |
+ |
- |
+ |
f(x) |
↑ |
↓ |
↑ |
∴當(dāng)a>-3時(shí),函數(shù)f(x)存在單調(diào)減區(qū)間,為[-1-
,1](7分)
3當(dāng)a<-3時(shí),-1-
>1,有
x |
(-∞,1) |
(1,-1-) |
(-1-,+∞) |
f′(x) |
+ |
- |
+ |
f(x) |
↑ |
↓ |
↑ |
∴當(dāng)a<-3時(shí),函數(shù)f(x)存在單調(diào)減區(qū)間,為[1,-1-
a](9分)
(Ⅱ)由(Ⅰ)知:x=1不是函數(shù)f(x)的極值點(diǎn),則a=-3,
b=3,c=1,f(x)=x
3-3x
2+3x+1=(x-1)
3+2(10分)
設(shè)點(diǎn)P(x
0,y
0)是函數(shù)f(x)的圖象上任意一點(diǎn),則y
0=f(x
0)=(x
0-1)
3+2,
點(diǎn)p(x
0,y
0)關(guān)于點(diǎn)M(1,2)的對稱點(diǎn)為Q(2-x
0,4-y
0),
∵f(2-x
0)=(2-x
0-1)
3+2=-(x
0-1)
3+2=2-y
0+2=4-y
0∴點(diǎn)Q(2-x
0,4-y
0)在函數(shù)f(x)的圖象上.
由點(diǎn)P的任意性知函數(shù)f(x)的圖象關(guān)于點(diǎn)M對稱.(14分)
點(diǎn)評:本題考查函數(shù)的單調(diào)性,具有一定的難度,解題時(shí)要結(jié)合導(dǎo)數(shù)的性質(zhì),合理地進(jìn)行解答.