已知函數(shù),(1) 若的解集是,求實(shí)數(shù)的值;(2) 若恒成立,求實(shí)數(shù)的取值范圍.

(1) ;(2) .

解析試題分析:(1)易知是方程的兩個(gè)根,即可聯(lián)立含的方程組求解;(2)由構(gòu)建的關(guān)系,而恒成立,轉(zhuǎn)化為恒成立,結(jié)合二次函數(shù)的圖像可知只需即可.
試題解析:(1) 由題意得:是方程的兩個(gè)根,所以:,解得;⑵ 由,而恒成立 , 即: 恒成立,所以,解得 ,此為所求的的取值范圍.
考點(diǎn): 1,二次不等式與二次函數(shù);二次方程的聯(lián)系;2,蘊(yùn)含方程的思想,化歸與轉(zhuǎn)化的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)用反證法證明:函數(shù)不可能為偶函數(shù);
(2)求證:函數(shù)上單調(diào)遞減的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場,設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,,且中,,經(jīng)測量得到.為保證安全同時(shí)考慮美觀,健身廣場周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過點(diǎn)作一直線交,從而得到五邊形的市民健身廣場,設(shè)
(1)將五邊形的面積表示為的函數(shù);
(2)當(dāng)為何值時(shí),市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分16分)已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明:上的偶函數(shù);
(2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍;
(3)已知正數(shù)滿足:存在,使得成立,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=4x+m·2x+1有且僅有一個(gè)零點(diǎn),求m的取值范圍,并求出該零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
證明:(1)存在唯一,使;
(2)存在唯一,使,且對(1)中的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數(shù)g(x)的最大值與最小值的差為h(a).
(1)求函數(shù)h(a)的解析式;
(2)畫出函數(shù)y=h(x)的圖象并指出h(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•湖北)設(shè)a>0,b>0,已知函數(shù)f(x)=
(1)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),稱f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(1)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(2)a、b的幾何平均數(shù)記為G.稱為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)的圖像如圖所示,則              。

查看答案和解析>>

同步練習(xí)冊答案