【題目】已知m,n,s,t∈R+ , m+n=2, + =9,其中m,n是常數(shù),當(dāng)s+t取最小值 時(shí),m,n對(duì)應(yīng)的點(diǎn)(m,n)是橢圓 =1的一條弦的中點(diǎn),則此弦所在的直線方程 .
【答案】x+2y﹣3=0
【解析】解:∵sm、n、s、t為正數(shù),m+n=2, + =9, s+t最小值是 ,
∴( + )(s+t)的最小值為4.
∴( + )(s+t)=n+m+ + ≥m+n+2 =m+n+2 ,
滿足 時(shí)取最小值,
此時(shí)最小值為m+n+2 =2+2 =4,
得:mn=1,又:m+n=2,所以,m=n=1.
設(shè)以(1,1)為中點(diǎn)的弦交橢圓 =1于A(x1 , y1),B(x2 , y2),
由中點(diǎn)從坐標(biāo)公式知x1+x2=2,y1+y2=2,
把A(x1 , y1),B(x2 , y2)分別代入x2+2y2=4,得
,
① ﹣②,得2(x1﹣x2)+4(y1﹣y2)=0,
∴k= =﹣ ,
∴此弦所在的直線方程為y﹣1=﹣ (x﹣1),
即x+2y﹣3=0.
所以答案是:x+2y﹣3=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2 +n,求b1+b2+b3+…+b10的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三個(gè)內(nèi)角是A,B,C的對(duì)邊分別是a,b,c,其中c=10,且 .
(1)求證:△ABC是直角三角形;
(2)設(shè)圓O過A,B,C三點(diǎn),點(diǎn)P位于劣弧AC上,∠PAB=60°,求四邊形ABCP的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,橢圓與y軸的正半軸交于點(diǎn)B,且|BF|= .
(1)求橢圓E的方程;
(2)若斜率為1的直線l經(jīng)過點(diǎn)(1,0),與橢圓E相交于不同的兩點(diǎn)M,N,在橢圓E上是否存在點(diǎn)P,使得△PMN的面積為 ,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2, =0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A﹣PB﹣E的大小為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,已知a1=2,b1=4,且﹣an , bn , an+1成等差數(shù)列,﹣bn , an , bn+1也成等差數(shù)列. (Ⅰ)求證:數(shù)列{an+bn}和{an﹣bn}都是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若cn=(an﹣3n)log3[an﹣(﹣1)n],求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣4這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于( )
A.16
B.10
C.26
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a15+a16+a17=﹣45,a9=﹣36,Sn為其前n項(xiàng)和.
(1)求Sn的最小值,并求出相應(yīng)的n值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,兩個(gè)頂點(diǎn)分別為A(﹣a,0),B(a,0),點(diǎn)M(﹣1,0),且3 = ,過點(diǎn)M斜率為k(k≠0)的直線交橢圓E于C,D兩點(diǎn),其中點(diǎn)C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1 , k2 , 求證: 為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com