分析 (1)先求導(dǎo),由此進(jìn)行分類討論,能得到函數(shù)f(x)在(0,e]上的單調(diào)性.
(2)對(duì)g(x)求導(dǎo),由(1)知,當(dāng)a=1時(shí),f(x)在(0,+∞)上的最小值:f(x)min=f(1)=0,由此能導(dǎo)出不存在實(shí)數(shù)x0∈(0,+∞),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直
解答 解:(1)∵f(x)=$\frac{a}{x}$+lnx-1,∴x∈(0,+∞),∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
若a≤0,則f′(x)>0,f(x)在(0,e]上單調(diào)遞增;
若0<a<e,當(dāng)x∈(0,a)時(shí),f′(x)<0,函數(shù)f(x)在區(qū)間(0,a)上單調(diào)遞減,
當(dāng)x∈(a,e]時(shí),f′(x)>0,函數(shù)f(x)在區(qū)間(a,e]上單調(diào)遞增,
若a≥e,則f′(x)≤0,函數(shù)f(x)在區(qū)間(0,e]上單調(diào)遞減.
(2)解:∵g(x)=(lnx-1)ex+x,x∈(0,+∞),
g′(x)=(lnx-1)′ex+(lnx-1)(ex)′+1
=$\frac{{e}^{x}}{x}$+(lnx-1)ex+1
=($\frac{1}{x}$+lnx-1)ex+1,
由(1)易知,當(dāng)a=1時(shí),f(x)=$\frac{1}{x}$在(0,+∞)上的最小值:f(x)min=f(1)=0,
即x0∈(0,+∞)時(shí),$\frac{1}{{x}_{0}}$+lnx0-1≥0,
又${e}^{{x}_{0}}$>0,
∴g′(x0)=($\frac{1}{{x}_{0}}$+lnx0-1)${e}^{{x}_{0}}$+1≥1>0.
曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直等價(jià)于方程g′(0)=0有實(shí)數(shù)解.
而g′(x0)>0,即方程g′(x0)=0無(wú)實(shí)數(shù)解.故不存在.
點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的判斷,考查實(shí)數(shù)是否存在的判斷,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想,綜合性強(qiáng),有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>4或x<0} | B. | {x|-2<x<2} | C. | {x|x>2或x<-2} | D. | {x|0<x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com