正四面體ABCD中,AB與平面BCD所成角的正弦值為(  )
A、
6
3
B、
3
6
C、
2
4
D、
3
3
分析:在正四面體ABCD中,過A作AH⊥平面BCD于點H,則H為底面正三角形BCD的外心,連接BH,則∠ABH=α,就是AB與平面BCD所成角,解直角三角形ABH即可.
解答:精英家教網(wǎng)解:正四面體ABCD,高為AH,
則H為底面正三角形BCD的外心,則∠ABH=α,就是AB與平面BCD所成角,
在Rt△ABH中,設(shè)棱長為a,
則BH=a
3
2
×
2
3
=
3
a,AH=
a2-(
3
3
)
2
=
6
3
a
,
∴sinα=
AH
AB
=
6
a
3
a
=
6
3

故選A.
點評:考查直線和平面所成的角,關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在的棱長為1的正四面體ABCD中,E是BC的中點,則
AE
CD
=( 。
A、0
B、
1
2
C、-
1
2
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在棱長為1的正四面體ABCD中,E是BC的中點,則
AE
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、求證:正四面體ABCD中相對的兩棱(即異面的兩棱)互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)使用類比推理得到如下結(jié)論:
(1)同一平面內(nèi),三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b,類比出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b;
(2)a,b∈R,a-b>0則a>b,類比出:a,b∈C,a-b>0則a>b;
(3)以點(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2,類比出:以點(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2
(4)正三角形ABC中,M是BC的中點,O是△ABC外接圓的圓心,則
AO
OM
=2
,類比出:在正四面體ABCD中,若M是△BCD的三邊中線的交點,O為四面體ABCD外接球的球心,則
AO
OM
=3

其中類比的結(jié)論正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,E、F分別為棱AD、BC的中點,連接AF、CE,則異面直線AF和CE所成角的正弦值為( 。
A、
1
3
B、
2
3
C、
2
4
D、
5
3

查看答案和解析>>

同步練習(xí)冊答案