【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機(jī)抽取5間,統(tǒng)計(jì)元旦期間的網(wǎng)購(gòu)金額(單位:萬(wàn)元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)若網(wǎng)購(gòu)金額(單位:萬(wàn)元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.根據(jù)莖葉圖推斷90間服務(wù)站中有幾間優(yōu)秀服務(wù)站?
(3)從隨機(jī)抽取的5間服務(wù)站中再任取2間作網(wǎng)購(gòu)商品的調(diào)查,求恰有1間是優(yōu)秀服務(wù)站的概率.
【答案】(1)12;(2)36;(3).
【解析】分析:(1)直接利用平均值公式求解即可;(2)根據(jù)樣本中優(yōu)秀服務(wù)站的頻率估計(jì)總體中優(yōu)秀服務(wù)站的頻率,從而可得結(jié)果;(3)利用列舉法可得隨機(jī)抽取的5間服務(wù)站中任取2間的可能性共有種,其中其中恰有1間是優(yōu)秀服務(wù)站的情況有種,由古典概型概率公式可得結(jié)果.
詳解:(1)樣本均值
(2)樣本中優(yōu)秀服務(wù)站為2間,頻率為,由此估計(jì)90間服務(wù)站中有間優(yōu)秀服務(wù)站;
(3)由于樣本中優(yōu)秀服務(wù)站為2間,記為,非優(yōu)秀服務(wù)站為3間,記為,從隨機(jī)抽取的5間服務(wù)站中任取2間的可能性有
共10種情況,其中恰有1間是優(yōu)秀服務(wù)站的情況為
6種情況,故所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)學(xué)成績(jī) | 145 | 130 | 120 | 105 | 100 |
物理成績(jī) | 110 | 90 | 102 | 78 | 70 |
數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系.
(I)求關(guān)于的線性回歸方程;
(II)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(I)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);
(III)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀. 若
該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為50%和60%,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人,在答卷頁(yè)上填寫下面2×2列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
物理優(yōu)秀 | 物理不優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | |||
數(shù)學(xué)不優(yōu)秀 | |||
合計(jì) | 60 |
參考數(shù)據(jù):回歸直線的系數(shù)
,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入21世紀(jì)以來,南康區(qū)家具產(chǎn)業(yè)快速發(fā)展,為廣大市民提供了數(shù)十萬(wàn)就業(yè)崗位,提高了廣大市民的收入,也帶動(dòng)南康和周邊縣市的經(jīng)濟(jì)快速發(fā)展.同時(shí),由于生產(chǎn)設(shè)備相對(duì)落后,生產(chǎn)過程中產(chǎn)生大量粉塵、廢氣,給人們的健康、交通安全等帶來了嚴(yán)重影響.經(jīng)研究發(fā)現(xiàn),工業(yè)廢氣、粉塵等污染物排放是霧霾形成和持續(xù)的重要原因,治理污染刻不容緩.為此,某工廠新購(gòu)置并安裝了先進(jìn)的廢氣、粉塵處理設(shè)備,使產(chǎn)生的廢氣、粉塵經(jīng)過過濾后再排放,以降低對(duì)空氣的污染.已知過濾過程中廢氣粉塵污染物的數(shù)量(單位:)與過濾時(shí)間 (單位:)間的關(guān)系為(均為非零常數(shù),為自然對(duì)數(shù)的底數(shù))其中為時(shí)的污染物數(shù)量.若過濾后還剩余的污染物.
(1)求常數(shù)的值.
(2)試計(jì)算污染物減少到至少需要多長(zhǎng)時(shí)間(精確到.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于的動(dòng)點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求證:以 為直徑的圓與直線恒相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱的底面是直角梯形,,,、分別是棱、上的動(dòng)點(diǎn),且,,,.
(1)證明:無(wú)論點(diǎn)怎樣運(yùn)動(dòng),四邊形都為矩形;
(2)當(dāng)時(shí),求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).
(1)試規(guī)定的值,并解釋其實(shí)際意義;
(2)試根據(jù)假定寫出函數(shù)應(yīng)該滿足的條件和具有的性質(zhì);
(3)設(shè).現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較。空f明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,平面底面,四邊形是正方形, 是的中點(diǎn),且,.
(I)證明: ;
(Ⅱ)求直線與平面所成角的正弦值 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com