【題目】已知橢圓的焦距為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若不經(jīng)過(guò)點(diǎn)的直線交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.

【答案】(1);(2)

【解析】試題分析:(1)由已知條件先求出橢圓的半焦距,再把代入橢圓方程結(jié)合性質(zhì) ,求出 、即可求出橢圓的方程;(2)設(shè)直線的方程為與橢圓的方程聯(lián)立,根據(jù)韋達(dá)定理及過(guò)兩點(diǎn)的斜率公式,利用直線的斜率之和為零可得從而可得結(jié)果.

試題解析:(1)因?yàn)闄E圓的焦距為,且過(guò)點(diǎn),所以.因?yàn)?/span>,解得,所以橢圓的方程為.

(2)設(shè)點(diǎn),則,由消去,(*)則,因?yàn)?/span>,即,化簡(jiǎn)得.即.(**)代入得,整理得,所以.若,可得方程(*)的一個(gè)根為,不合題意,所以直線的斜率為定值,該值為.

【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和過(guò)兩點(diǎn)的斜率公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱臺(tái)DEF ABC,AB=2DE,G,H分別為AC,BC的中點(diǎn).

(1)求證:平面ABED∥平面FGH;

(2)CFBC,ABBC求證:平面BCD⊥平面EGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結(jié)論中錯(cuò)誤的是(
A.f(x)的圖象關(guān)于( ,1)中心對(duì)稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關(guān)于x= 對(duì)稱
D.f(x)的最大值為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點(diǎn)對(duì)稱,且當(dāng)x≥0時(shí)恒有f(x﹣ )=f(x+ ),當(dāng)x∈[0,2)時(shí),f(x)=ex﹣1,則f(2017)+f(﹣2016)=(
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α為銳角,且 ,函數(shù) ,數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求證:數(shù)列{an+1}為等比數(shù)列;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求經(jīng)過(guò)點(diǎn)A(-1,-2)且到原點(diǎn)距離為1的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足an2﹣2Sn=2﹣an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案