已知四棱錐P-ABCD,底面ABCD是的菱形,又,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

(Ⅰ)證明:DN//平面PMB;

(Ⅱ)證明:平面PMB平面PAD;

見(jiàn)解析

【解析】

試題分析:(Ⅰ)證線面平行轉(zhuǎn)化證線線平行,取 中點(diǎn),證明(Ⅱ)證面面平行轉(zhuǎn)化為證線面平行,再轉(zhuǎn)化證線線平行,即證,

試題解析:(Ⅰ)證明:取 中點(diǎn) ,連結(jié) 、 ,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015040506172752476909/SYS201504050617345250711502_DA/SYS201504050617345250711502_DA.008.png">、分別是棱 、 中點(diǎn),

所以 ,且 ,于是

.

(Ⅱ)

又因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015040506172752476909/SYS201504050617345250711502_DA/SYS201504050617345250711502_DA.017.png"> 是的菱形,且中點(diǎn),

所以.又所以.

12分

考點(diǎn):線面、面平行垂直的判定性質(zhì)定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖北省襄陽(yáng)市等高二12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)有一組圓為正整數(shù)),下列四個(gè)命題:

①存在一條定直線與所有的圓均相交

②存在一條定直線與所有的圓均不相交

③所有的圓均不經(jīng)過(guò)原點(diǎn)

④存在一條定直線與所有的圓均相切

其中真命題的序號(hào)是 .(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省東莞市三校高一上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)上是增函數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省天水市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)f(x)=的值域?yàn)開_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省天水市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

下列函數(shù)是奇函數(shù)的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

空間四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),若AC=BD=a,且AC與BD所成的角為60o,則四邊形EFGH的面積是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知滿足,則直線必過(guò)定點(diǎn) ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知p:關(guān)于x的不等式的解集為R;q:關(guān)于x的不等式的解集為R,則p是q成立的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年上海市閘北區(qū)高三上學(xué)期期末練習(xí)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓過(guò)點(diǎn)且與拋物線有一個(gè)公共的焦點(diǎn).

(1)求橢圓方程;

(2)直線過(guò)橢圓的右焦點(diǎn)且斜率為與橢圓交于兩點(diǎn),求弦的長(zhǎng);

(3)以第(2)題中的為邊作一個(gè)等邊三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案