12.已知橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1,則此橢圓的長半軸長10,離心率為$\frac{4}{5}$.

分析 利用橢圓的方程求解a,b,然后求解離心率即可.

解答 解:橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1,
可得a=10,b=6,c=$\sqrt{100-36}$=8,
e=$\frac{c}{a}$=$\frac{4}{5}$.
故答案為:10,$\frac{4}{5}$.

點評 本題考查橢圓方程的應(yīng)用,橢圓的簡單性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知直線l1:ax+2y+6=0和直線${l_2}:x+(a-1)y+{a^2}-1=0$.當(dāng)l1∥l2時,求a的值.
(2)已知點P(2,-1),求過P點且與原點距離最大的直線l的方程,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=ax+sinx+cosx.若函數(shù)f(x)的圖象上存在不同的兩點A、B,使得曲線y=f(x)在點A、B處的切線互相垂直,則實數(shù)a的取值范圍為( 。
A.$[-\frac{1}{2},\frac{1}{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓M:(x+1)2+y2=1圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)若過點(1,0)的直線與曲線C交于R,S兩點,問是否在x軸上存在一點T,使得當(dāng)k變動時總有∠OTS=∠OTR?若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.點(3,0)到直線y=1的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的兩個根,且$α,β∈(0,\frac{π}{2})$,則α+β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為得到函數(shù)y=sin2x-cos2x的圖象,可由函數(shù)y=$\sqrt{2}$sin2x的圖象( 。
A.向左平移$\frac{π}{8}$個單位B.向右平移$\frac{π}{8}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\frac{1}{x}$•cosx,則f(π)+f′($\frac{π}{2}$)=( 。
A.0B.$\frac{3}{π}$C.$\frac{2}{π}$D.-$\frac{3}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求證:平面MQB⊥平面PAD;
(2)若二面角M-BQ-C大小的為60°,求QM的長.

查看答案和解析>>

同步練習(xí)冊答案