已知為正項(xiàng)等比數(shù)列,,為等差數(shù)列的前
項(xiàng)和,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求.

(1),;(2).

解析試題分析:(1)利用方程組求出等比數(shù)列的首項(xiàng)與公比以及等差數(shù)列的首項(xiàng)與公差,從而確定數(shù)列的通項(xiàng)公式;(2)先確定數(shù)列的通項(xiàng)公式,然后利用錯(cuò)位相減法求出.
(1),,
,,
(2),
,
相減得


,
.
考點(diǎn):1.等差數(shù)列與等比數(shù)列的通項(xiàng)公式;2.錯(cuò)位相減法求和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列前三項(xiàng)為,前項(xiàng)的和為
(1)求 ;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定正整數(shù),若項(xiàng)數(shù)為的數(shù)列滿足:對(duì)任意的,均有(其中),則稱(chēng)數(shù)列為“Γ數(shù)列”.
(1)判斷數(shù)列是否是“Γ數(shù)列”,并說(shuō)明理由;
(2)若為“Γ數(shù)列”,求證:對(duì)恒成立;
(3)設(shè)是公差為的無(wú)窮項(xiàng)等差數(shù)列,若對(duì)任意的正整數(shù),
均構(gòu)成“Γ數(shù)列”,求的公差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•浙江)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{ }、{ }滿足:.
(1)求          
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時(shí) 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是首項(xiàng)為a,公差為d的等差數(shù)列,是其前n項(xiàng)的和。記,其中c為實(shí)數(shù)。
(1)若,且成等比數(shù)列,證明:
(2)若是等差數(shù)列,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從數(shù)列中抽出一些項(xiàng),依原來(lái)的順序組成的新數(shù)列叫數(shù)列的一個(gè)子列.
(1)寫(xiě)出數(shù)列的一個(gè)是等比數(shù)列的子列;
(2)設(shè)是無(wú)窮等比數(shù)列,首項(xiàng),公比為.求證:當(dāng)時(shí),數(shù)列不存在
是無(wú)窮等差數(shù)列的子列.

查看答案和解析>>

同步練習(xí)冊(cè)答案