已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(I)求橢圓的方程;
(II)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)根據(jù)題中條件確定、、的值,進(jìn)而確定橢圓的方程;(Ⅱ)對(duì)直線的斜率存在與否進(jìn)行分類(lèi)討論,并在相應(yīng)的情況下求出的最大值,并作出比較,尤其是在處理直線的斜率存在,一般將直線的方程設(shè)為,借助韋達(dá)定理,確定之間的關(guān)系,然后將化為自變量為的函數(shù),借助函數(shù)的最值來(lái)求取,但要注意相應(yīng)自變量的取值范圍.
試題解析:解:(I)由已知得,
解得,又,
所以橢圓的方程為.
3分
(II)設(shè).
當(dāng)直線與軸垂直時(shí),由橢圓的對(duì)稱(chēng)性可知,點(diǎn)軸上,且與點(diǎn)不重合,
顯然三點(diǎn)不共線,不符合題設(shè)條件.
故可設(shè)直線的方程為.
消去整理得
.                ①
,
所以點(diǎn)的坐標(biāo)為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/c/fhxbu3.png" style="vertical-align:middle;" />三點(diǎn)共線,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/70/0/p492l1.png" style="vertical-align:middle;" />,所以,
此時(shí)方程①為,則,
所以,
,
所以,
故當(dāng)時(shí),的最大值為.[來(lái)源:學(xué)科網(wǎng)ZXXK]
13分
考點(diǎn):橢圓的方程、韋達(dá)定理、點(diǎn)到直線的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的長(zhǎng)軸兩端點(diǎn)分別為,是橢圓上的動(dòng)點(diǎn),以為一邊在軸下方作矩形,使于點(diǎn),于點(diǎn)

(Ⅰ)如圖(1),若,且為橢圓上頂點(diǎn)時(shí),的面積為12,點(diǎn)到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的離心率是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿(mǎn)足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)為動(dòng)點(diǎn),分別為橢圓的左右焦點(diǎn).已知△為等腰三角形.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于兩點(diǎn),是直線上的點(diǎn),滿(mǎn)足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;
(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,若點(diǎn)滿(mǎn)足,證明:點(diǎn)在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

時(shí)秒“嫦娥二號(hào)”探月衛(wèi)星由長(zhǎng)征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約公里、遠(yuǎn)地點(diǎn)高度約萬(wàn)公里的直接奔月橢圓(地球球心為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面公里、近月面公里(月球球心為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開(kāi)展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測(cè)。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大小;
(Ⅱ)以為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)作直線與雙曲線相交于兩點(diǎn)、,且為線段的中點(diǎn),求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿(mǎn)足,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案