3.設(shè)平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$-2$\overrightarrow$等于( 。
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

分析 利用平面向量坐標運算法則求解.

解答 解:∵平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),
∴$\overrightarrow{a}$-2$\overrightarrow$=(5,3)-(2,-4)=(3,7).
故選:A.

點評 本題考查向量的運算,是基礎(chǔ)題,解題時要認真審題,注意平面向量坐標運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.雙曲線$\frac{x^2}{m}-\frac{y^2}{6}=1$的一條漸近線方程為y=x,則實數(shù)m的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.請寫出“好貨不便宜”的等價命題:便宜沒好貨.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對于函數(shù)f(x),如果存在非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=x2,則y=f(x)與y=log5x的圖象的交點個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.閱讀下面材料,嘗試類比探究函數(shù)y=x2-$\frac{1}{{x}^{2}}$的圖象,寫出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測作出函數(shù)對應的圖象.
閱讀材料:
我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.
在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個應用函數(shù)的特征研究對應圖象形狀的例子.
對于函數(shù)y=$\frac{1}{x}$,我們可以通過表達式來研究它的圖象和性質(zhì),如:
(1)在函數(shù)y=$\frac{1}{x}$中,由x≠0,可以推測出,對應的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測出,對應的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y=$\frac{1}{x}$中,當x>0時y>0;當x<0時y<0,可以推測出,對應的圖象只能在第一、三象限;
(3)在函數(shù)y=$\frac{1}{x}$中,若x∈(0,+∞)則y>0,且當x逐漸增大時y逐漸減小,可以推測出,對應的圖象越向右越靠近x軸;若x∈(-∞,0),則y<0,且當x逐漸減小時y逐漸增大,可以推測出,對應的圖象越向左越靠近x軸;
(4)由函數(shù)y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函數(shù),可以推測出,對應的圖象關(guān)于原點對稱.
結(jié)合以上性質(zhì),逐步才想出函數(shù)y=$\frac{1}{x}$對應的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進行了靜態(tài)(特殊點)的研究,又進行了動態(tài)(趨勢性)的思考.讓我們享受數(shù)學研究的過程,傳播研究數(shù)學的成果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知α,β∈(0,$\frac{π}{2}$),且滿足sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,則α+β的值為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{4}$個單位長度后,所得的圖象與原圖象重合,則ω的最小值等于( 。
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

同步練習冊答案