【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當時,,求的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)求出函數(shù)的導數(shù),分和兩種情況討論,分析導數(shù)的符號變化,即可求出函數(shù)的單調(diào)區(qū)間;
(2)問題變形為,令,由題意得出,根據(jù)函數(shù)的單調(diào)性確定的范圍即可.
(1),定義域為且.
①當時,則,則函數(shù)在上單調(diào)遞增;
②當時,由,得,得.
當時,,函數(shù)單調(diào)遞減;
當時,,函數(shù)單調(diào)遞增.
此時,函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
綜上所述,當時,函數(shù)的單調(diào)遞增區(qū)間為;
當時,函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;
(2)變形為,
令,定義域為,且,
.
①當時,對任意的,,函數(shù)在區(qū)間上為增函數(shù),
此時,,合乎題意;
②當時,則函數(shù)在上的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(i)當時,即當時,則函數(shù)在區(qū)間上為增函數(shù),
此時,則函數(shù)在區(qū)間上為增函數(shù).
此時,,合乎題意;
(ii)當時,即當時,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以,,
又,所以,函數(shù)在區(qū)間上單調(diào)遞減,
當時,,不合乎題意.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點到右焦點的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點作傾斜角不為零的直線與橢圓交于兩點,設線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.
(1)求曲線的極坐標方程;
(2)在曲線上取兩點、于原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點的坐標分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設直線方程為,直線方程為,直線交于,點,關于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將所有平面向量組成的集合記作,是從到的對應關系,記作或,其中、、、都是實數(shù),定義對應關系的模為:在的條件下的最大值記作,若存在非零向量,及實數(shù)使得,則稱為的一個特殊值;
(1)若,求;
(2)如果,計算的特征值,并求相應的;
(3)若,要使有唯一的特征值,實數(shù)、、、應滿足什么條件?試找出一個對應關系,同時滿足以下兩個條件:①有唯一的特征值,②,并驗證滿足這兩個條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中的估計值分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級有、兩個自習教室,甲、乙、丙名學生各自隨機選擇其中一個教室自習,則甲、乙兩人不在同一教室上自習的概率為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com