某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(Ⅰ)請(qǐng)分析函數(shù)y=+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(Ⅱ)若該公司采用函數(shù)模型y=作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.
【答案】分析:(Ⅰ)設(shè)獎(jiǎng)勵(lì)函數(shù)模型為y=f(x),根據(jù)“獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,說(shuō)明在定義域上是增函數(shù),且獎(jiǎng)金不超過(guò)9萬(wàn)元,即f(x)≤9,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.即f(x)≤
(Ⅱ)先將函數(shù)解析式進(jìn)行化簡(jiǎn),然后根據(jù)函數(shù)的單調(diào)性,以及使g(x)≤9對(duì)x∈[10,1000]恒成立以及使g(x)≤對(duì)x∈[10,1000]恒成立,建立不等式,求出相應(yīng)的a的取值范圍.
解答:解:(Ⅰ)對(duì)于函數(shù)模型f(x)=+2
當(dāng)x∈[10,1000]時(shí),f(x)為增函數(shù)  …(2分)
f(x)max=f(1000)=+2=+2<9,所以f(x)≤9恒成立;…(4分)
但當(dāng)x=10時(shí),f(10)=+2>,即f(x)≤不恒成立
故函數(shù)模型y=+2不符合公司要求…(6分)
(Ⅱ)對(duì)于函數(shù)模型g(x)=,即g(x)=10-
當(dāng)3a+20>0,即a>-時(shí)遞增…(8分)
為使g(x)≤9對(duì)x∈[10,1000]恒成立,即要g(1000)≤9,3a+18≥1000,
即a≥…(10分)
為使g(x)≤對(duì)x∈[10,1000]恒成立,即要,即x2-48x+15a≥0恒成立,
即(x-24)2+15a-576≥0(x∈[10,1000])恒成立,又x=24∈[10.1000],
故只需15a-576≥0即可,
所以a≥…(12分)
綜上所述,a≥,所以滿足條件的最小的正整數(shù)a的值為328…(13分)
點(diǎn)評(píng):本題主要考查了函數(shù)模型的選擇與應(yīng)用,以及函數(shù)的最值得應(yīng)用,同時(shí)考查了函數(shù)的單調(diào)性和恒成立問題,以及轉(zhuǎn)化的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(Ⅰ)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;
(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=
x150
+2
;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y=
x
150
+2
是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用模型函數(shù)y=
10x-3a
x+2
作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(Ⅰ)請(qǐng)分析函數(shù)y=
x
150
+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(Ⅱ)若該公司采用函數(shù)模型y=
10x-3a
x+2
作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市通州區(qū)高三重點(diǎn)熱點(diǎn)專項(xiàng)檢測(cè)數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元~1000萬(wàn)元的投資收 

益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單

位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.現(xiàn)

有兩個(gè)獎(jiǎng)勵(lì)方案的函數(shù)模型:(1);(2).試問這兩個(gè)函數(shù)模

型是否符合該公司要求,并說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州蕭山三校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;

(2)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案