.(本題滿(mǎn)分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點(diǎn).

(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.

(Ⅰ)
 

(Ⅱ)。

解析試題分析:(Ⅰ)

 

(Ⅱ)由(2)知

考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,體積計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡(jiǎn)化證明過(guò)程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱柱中,E為AC中點(diǎn)

(1)求證: 
(2)求證:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,

(1)求證:FC∥平面AED
(2)若,當(dāng)二面角為直二面角時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
在四棱錐中,,平面,的中點(diǎn),

(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點(diǎn),求證:平面平面;
(Ⅲ)求二面角的大小。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, 是邊長(zhǎng)為的正方形,平面,,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線(xiàn)段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,EF分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD
(Ⅱ)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且的中點(diǎn).

求證:(1)平面平面;
(2)直線(xiàn)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.

(1)求異面直線(xiàn)PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體 中點(diǎn).

(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面若存在,求的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案