【題目】以下四個命題中,其中正確的個數(shù)為( ) ①命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2=0”;
②“ ”是“cos2α=0”的充分不必要條件;
③若命題 ,則p:x∈R,x2+x+1=0;
④若p∧q為假,p∨q為真,則p,q有且僅有一個是真命題.
A.1
B.2
C.3
D.4
【答案】B
【解析】解:對于 ①,命題“若x2﹣3x+2=0,則x=1”的逆否命題為: “若x≠1,則x2﹣3x+2≠0”,故①錯誤;
對于 ②, 時,cos2α=cos =0,充分性成立;
cos2α=0時,α= + ,k∈Z,必要性不成立,
是充分不必要條件,故②正確;
對于③,命題 ,
則p:x∈R,x2+x+1≠0,故③錯誤;
對于④,當(dāng)p∧q為假命題,p∨q為真命題時,
p,q中有且僅有一個是真命題,故④正確.
綜上,正確的命題序號是②④,共2個.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準備在一片扇形區(qū)域(如圖3)上按照圖4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點B,C在半徑ON上,頂點A在半徑OM上,頂點D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費多少元錢?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點,線段OA的垂直平分線和圓C交于M,N兩點,且|MN|=2
(1)求圓C的方程
(2)設(shè)點P在圓C上,試問使△POA的面積等于2的點P共有幾個?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個非零向量 與 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ).求證:A,B,D三點共線;
(2)試確定實數(shù)k,使k + 和 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點分別為F1(﹣2 ,0)和F2(2 ,0),長軸長為6,設(shè)直線y=x+2交橢圓C于A、B兩點.求:線段AB的中點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且 ,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0},且A∪B=A,A∩C=C,求實數(shù)a,m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com