如圖,一艘船以32.2n mile/h的速度向正北航行.在A處看燈塔S在船的北偏東20°的方向,30min后航行到B處,在B處看燈塔在船的北偏東65°的方向,已知距離此燈塔6.5n mile以外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?
考點:解三角形的實際應(yīng)用
專題:應(yīng)用題,解三角形
分析:問這艘船能否可以繼續(xù)沿正北方向航行,只要證明S到直線AB的距離要大于6.5海里,求出S到直線AB的距離即可.
解答: 解:在△ABS中,AB=32.2×0.5=16.1nmile,∠ABS=115°,
根據(jù)正弦定理,
AS
sin∠ABS
=
AB
sin(65°-20°)
,AS=
AB×sinB
sin(65°-20°)
=AB×sin∠ABS×
2
=16.1×sin115°×
2
,
S到直線AB的距離是d=AS×sin20°=16.1×sin115°×
2
×sin20°≈7.06
(cm).
所以這艘船可以繼續(xù)沿正北方向航行.
點評:此題考查的是解三角形的實際應(yīng)用,考查正弦定理,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B都是銳角,且A+B≠
π
2
,(1+tanA)(1+tanB)=2,求證:A+B=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于區(qū)間[a,b](或(a,b)、[a,b)、(a,b]),我們定義|b-a|為該區(qū)間的長度,特別地,[a,+∞)和(-∞,b]的區(qū)間長度為正無窮大.
(1)關(guān)于x的不等式ax2+(2a-1)x-2≤0的解集的區(qū)間長度不小于4,求實數(shù)a的取值范圍;
(2)關(guān)于x的不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0恰好有3個整數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對人們的休閑方式的一次調(diào)查中,共調(diào)查了120人,其中女性70人,男性50人.女性中有45人主要的休閑方式是看電視,另外25人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥底面ABCD,且PA=AD,點M、N分別為側(cè)棱PD、PC的中點.
(1)求證:CD∥平面AMN;
(2)求證:AM⊥平面PCD;
(3)求三棱錐C-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖關(guān)于星星的圖案構(gòu)成一個數(shù)列{an},an(n∈N*)對應(yīng)圖中星星的個數(shù).

(1)寫出a5,a6的值及數(shù)列{an}的通項公式;
(2)若數(shù)列{
1
an
}的前n項和Sn,求證Sn<2;
(3)若bn=
2n2-9n-11
2n
,對于(2)中的Sn,有cn=Sn•bn,求數(shù)列{|cn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=4,且
a
b
不共線.k為何值時,向量
a
+k
b
a
-k
b
互相垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC的底面ABC是直角三角形,且∠ACB=90°,PA⊥平面ABC,PA=AC=BC=1,D是線段PC的中點,如圖所示.
(Ⅰ)證明:AD⊥平面PBC;
(Ⅱ)求三棱錐P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 

①用最小二乘法求的線性回歸直線
y
=bx+a必過點(
.
x
,
.
y

②一批產(chǎn)品共50件,其中5件次品,其余均為合格品,現(xiàn)從中任取2件,則其中出現(xiàn)次品的概率為
C
1
5
C
1
49
C
2
50

③兩人獨立地解決同一個問題,甲解決這個問題的概率為P1,乙解決這個問題的概率為P2,兩人同時解決的概率為P3,則這個問題得到解決的概率等于P1+P2-P3,也等于1-(1-P1)(1-P2
④已知隨機變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=0.84,則P(ξ≤0)=0.16
⑤對于空間任意一點O和不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P、A、B、C四點共面的充要條件是x+y+z=1.

查看答案和解析>>

同步練習(xí)冊答案