【題目】下列說法正確的個(gè)數(shù)是( )

①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;

②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過定圓上一定點(diǎn)作圓的動(dòng)弦,為原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;

④已知是橢圓的左焦點(diǎn),設(shè)動(dòng)點(diǎn)在橢圓上,若直線的斜率大于,則直線為原點(diǎn))的斜率的取值范圍是.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)回歸方程的意義判斷①;先推出方程的一根大于1 , 一根大于0小于1,結(jié)合橢圓與雙曲線離心率定義可判斷②;利用參數(shù)法求出動(dòng)點(diǎn)的軌跡可判斷③;由題意畫出圖形,得到滿足直線的斜率大于所在的位置,求出直線的斜率的取值范圍可判斷④.

①根據(jù)回歸方程的意義,結(jié)合回歸方程為 ,可得該大學(xué)某女生身高增加,則其體重約增加,正確;

②關(guān)于的方程的兩根之和大于2 , 兩根之積等于1, 故兩根中,一根大于1 , 一根大于0小于1,可分別作為橢圓和雙曲線的離心率,正確;

③設(shè)定圓的方程為,定點(diǎn),設(shè),,由,得,消去參數(shù),得,即動(dòng)點(diǎn)的軌跡為圓,③錯(cuò)誤.

④由,得,

,如圖:

作垂直于軸的直線,交橢圓于,過斜率為的直線與橢圓交于,當(dāng)在橢圓弧上上時(shí),符合題意, 又,,,當(dāng)在橢圓弧上時(shí),直線 的斜率的取值范圍是 ,當(dāng)在橢圓弧上時(shí), 直線的斜率的取值范圍是,即滿足直線的斜率大于,直線的斜率的取值范圍是正確,綜上可知正確命題個(gè)數(shù)為3,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,左焦點(diǎn),直線與橢圓交于兩點(diǎn), 為橢圓上異于的點(diǎn).

1)求橢圓的方程;

2)若,以為直徑的圓點(diǎn),求圓的標(biāo)準(zhǔn)方程;

3)設(shè)直線軸分別交于,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一次骰子,將得到的點(diǎn)數(shù)分別記為

1)求直線與圓相切的概率;

2)將,4的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)數(shù)列{an}的前n項(xiàng)和為Sn10nn2,求數(shù)列{|an|}的前n項(xiàng)和.

2)已知等差數(shù)列{an}滿足a20,a6+a8=﹣10.求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。

求證:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建國(guó)家級(jí)文明城市,某城市號(hào)召出租車司機(jī)在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機(jī),他們參加“愛心送考”的次數(shù)統(tǒng)計(jì)如圖所示.

(1)求該出租車公司的司機(jī)參加“愛心送考”的人均次數(shù);

(2)從這200名司機(jī)中任選兩人,設(shè)這兩人參加送考次數(shù)之差的絕對(duì)值為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個(gè)省的GDP總量均實(shí)現(xiàn)了增長(zhǎng)

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個(gè)

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0,且a≠1,函數(shù)ya2x2ax1[11]上的最大值是14,則實(shí)數(shù)a的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,a,b,c分別為角A,B,C所對(duì)的三邊,

(I)求角A;

(II)若,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案