在極坐標(biāo)系中,ρ=2θ+1(0≤θ<2π)與θ=
π
2
的交點(diǎn)的極坐標(biāo)為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:直接聯(lián)立曲線方程,求出交點(diǎn)的極徑,得到交點(diǎn)的極坐標(biāo)即可.
解答: 解:將θ=
π
2
代入ρ=2θ+1(0≤θ<2π)解得ρ=π+1,所以交點(diǎn)的極坐標(biāo)為(π+1,
π
2
).
故答案為:(π+1,
π
2
).
點(diǎn)評(píng):本題是基礎(chǔ)題,考查極坐標(biāo)方程的應(yīng)用,考查計(jì)算能力,送分題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)△ABC的外接圓的切線AE與BC的延長(zhǎng)線交于點(diǎn)E,∠BAC的平分線與
BC交于點(diǎn)D.求證:
(1)∠ADE=∠DAC
(2)ED2=EC•EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銳角α,β滿(mǎn)足tanα,tanβ是方程x2-3
3
x+4=0的兩個(gè)根,則α+β的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,E為邊AD的中點(diǎn),AB=1,BC=2,分別以A,D為圓心,1為半徑作圓弧EB,EC,若由兩圓弧EB,EC及邊BC所圍成的平面圖形繞直線AD旋轉(zhuǎn)一周,則所形成的幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)與g(x)分別由下表給出,那么f(f(1))=
 
,f(g(2))=
 
,g(f(3)=
 
,g(g(4))=
 

x
 
1 2 3 4 x 1 2 3 4
f(x)
 
2 3 4 1 g(x) 2 1 4 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(5x2+2x-3)2-(x2-2x-3)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)系中,已知圓心C(3,
π
6
),半徑r=1.
(1)求圓的直角坐標(biāo)方程;
(2)若直線
x=-1+
3
2
t
y=
1
2
t
(t為 參數(shù)),與圓交于A,B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義域?yàn)镽的奇函數(shù)f(x)滿(mǎn)足f(1+x)=-f(x),則下列結(jié)論:
①f(x)的圖象過(guò)點(diǎn)(1,0);
②f(x)的圖象關(guān)于直線x=
1
2
對(duì)稱(chēng);
③f(x)是周期函數(shù),且2是它的一個(gè)周期;
④f(x)在區(qū)間(-1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿(mǎn)足a1=2,an+1=
1+an
1-an
(n∈N*),則該數(shù)列的前2014項(xiàng)的乘積a1•a2•a3…a2013•a2014=( 。
A、3B、-6C、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案