【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,解得a<x<3a.

命題q中:實(shí)數(shù)x滿足 2<x≤3.

若a=1,則p中:1<x<3,

∵p且q為真,∴ ,解得2<x<3,

故所求x∈(2,3)


(2)解:若p是q的充分不必要條件,

則q是p 的充分不必要條件,

,解得1<a≤2,

∴a的取值范圍是(1,2]


【解析】(1)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,解得a<x<3a.若a=1,則p中:1<x<3,由p且q為真,可得p與q都為真,即可得出.(2)若p是q的充分不必要條件,可得q是p 的充分不必要條件,即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,F(xiàn)1、F2分別是雙曲線 =1(a>0,b>0)的兩個(gè)焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點(diǎn),若△F2AB是等邊三角形,則雙曲線的離心率為(
A.
B.2
C. ﹣1
D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)500名學(xué)生中,血型為O的有200人,血型為A的有125人,血型為B的有125人,血型為AB型的有50人.為了研究血型與色弱的關(guān)系,要從中抽取一個(gè)容量為40的樣本,應(yīng)如何抽樣?寫(xiě)出血型為AB型的抽樣過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:y= x3 x+8(0<x≤120)已知甲、乙兩地相距100千米. (Ⅰ)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)y1 ,y2 ,其中a>0,且a≠1,試確定x為何值時(shí),有:
(1)y1=y(tǒng)2
(2)y1>y2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) . (Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù) ,若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足Sn=2n﹣an(n∈N*). (Ⅰ)計(jì)算a1 , a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an;
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列函數(shù)的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)= ;
(3)f(x)=
(4)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 的邊 上的高所在直線方程分別為 , ,頂點(diǎn) ,求 邊所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案