【題目】圓周率是圓的周長與直徑的比值,一般用字母表示.我們可以通過設(shè)計一個試驗(yàn)來估計的值:從表示的區(qū)域內(nèi)隨機(jī)抽取200個實(shí)數(shù)對,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對共有56個.則用隨機(jī)模擬的方法估計的近似值為________

【答案】(或3.12

【解析】

先根據(jù)古典概型概率計算x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對概率,再利用幾何概型概率計算xy兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對概率,最后列方程估計的近似值.

因?yàn)閺?/span>表示的區(qū)域內(nèi)隨機(jī)抽取200個實(shí)數(shù)對,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對共有56個,

所以xy兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對概率為

表示的區(qū)域?yàn)檎叫,面積為1,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對滿足,表示的區(qū)域?yàn)楣,面積為

所以xy兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對概率為

因此

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若恒成立,求實(shí)數(shù)的最大值

2)在(1)的條件下,求證:函數(shù)在區(qū)間內(nèi)存在唯一的極大值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央、國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位在某市定點(diǎn)幫扶某村100戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),將指標(biāo)按照,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為“絕對貧困戶”,否則認(rèn)定該戶為“相對貧困戶”;當(dāng)時,認(rèn)定該戶為“亟待幫住戶”.

1)為了更好的了解和幫助該村的這些貧困戶,決定用分層抽樣的方法從這100戶中隨機(jī)抽取20戶進(jìn)行更深入的調(diào)查,求應(yīng)該抽取“絕對貧困戶”的戶數(shù);

2)從這20戶中任取3戶,求“絕對貧困戶”多于“相對貧困戶”的概率;

3)現(xiàn)在從(1)中所抽取的“絕對貧困戶”中任取3戶,用表示所選3戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)曲線

1)求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),過點(diǎn)D作拋物線的切線l,切點(diǎn)A在第二象限.

1)求切點(diǎn)A的縱坐標(biāo).

2)有一離心率為的橢圓恰好經(jīng)過切點(diǎn)A,設(shè)切線l與橢圓的另一交點(diǎn)為點(diǎn)B,切線l,的斜率分別為,若成等差數(shù)列,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點(diǎn)至十點(diǎn)時間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:

    是否輔導(dǎo)

性別

輔導(dǎo)

不輔導(dǎo)

合計

25

60

合計

40

80

1)請將表中數(shù)據(jù)補(bǔ)充完整;

2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學(xué)的成人女性晚上八點(diǎn)至十點(diǎn)輔導(dǎo)子女作業(yè)的概率;

3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點(diǎn)至十點(diǎn)時間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的棱長為1的正方體中,點(diǎn)P在側(cè)面所在的平面上運(yùn)動,則下列命題中正確的(

A.若點(diǎn)P總滿足,則動點(diǎn)P的軌跡是一條直線

B.若點(diǎn)P到點(diǎn)A的距離為,則動點(diǎn)P的軌跡是一個周長為的圓

C.若點(diǎn)P到直線AB的距離與到點(diǎn)C的距離之和為1,則動點(diǎn)P的軌跡是橢圓

D.若點(diǎn)P到直線AD與直線的距離相等,則動點(diǎn)P的軌跡是雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市開發(fā)了一塊等腰梯形的菜花風(fēng)景區(qū)(如圖).經(jīng)測量,長為百米,長為百米,相距百米,田地內(nèi)有一條筆直的小路上,上)與平行且相距百米.現(xiàn)準(zhǔn)備從風(fēng)景區(qū)入口處出發(fā)再修一條筆直的小路交于,在小路的交點(diǎn)處擬建一座瞭望塔.

1)若瞭望塔恰好建在小路的中點(diǎn)處,求小路的長;

2)兩條小路將菜花風(fēng)景區(qū)劃分為四個區(qū)域,若將圖中陰影部分規(guī)劃為觀賞區(qū).求觀賞區(qū)面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化CC的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點(diǎn)P對應(yīng)的參數(shù)為,QC上的動點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

同步練習(xí)冊答案