【題目】已知數(shù)列、滿足: .

1)求

2)設(shè),求數(shù)列的通項(xiàng)公式;

3)設(shè),不等式恒成立時(shí),求實(shí)數(shù)的取值范圍.

【答案】1;(2;(3.

【解析】試題分析:(1)由已知,整理可得遞推公式,從而可算出, ;(2)由(1)遞推公式整理可得,即,且,所以數(shù)列是以為首項(xiàng), 為公差的等差數(shù)列,所以;(3)由(1)、(2)可求得,而

所以,則,由條件可知恒成立即可滿足條件,從而構(gòu)造函數(shù),通過函數(shù)的性質(zhì)可得解當(dāng)時(shí), 恒成立.

試題解析:(1,

,.……………………………………6

2,

數(shù)列是以為首項(xiàng), 為公差的等差數(shù)列.

.…………………………6

3)由于,所以,從而,則.

,

由條件可知恒成立即可滿足條件,

設(shè),

當(dāng)時(shí), 恒成立;

當(dāng)時(shí),由二次函數(shù)的性質(zhì)知不可能成立;

當(dāng)時(shí),對(duì)稱軸, 為單調(diào)遞減函數(shù),

,

,時(shí), 恒成立.

綜上知: 時(shí), 恒成立.…………………………………………12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知處的切線相同.

1的值及切線的方程;

2設(shè)函數(shù),若存在實(shí)數(shù)使得關(guān)于的不等式對(duì)上的任意實(shí)數(shù)恒成立,求的最小值及對(duì)應(yīng)的的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1的單調(diào)區(qū)間和極值;

2上的最小值

3設(shè)若對(duì)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1a<1b<0,則下列不等式:1a+b<1ab;|a|+b>0;a-1a>b-1b;lna2>lnb2中,正確的是(  )

(A)①④  (B)②③  (C)①③  (D)②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】pH值是水溶液的重要理化參數(shù)。若溶液中氫離子的濃度為[H](單位:mol/l),則其pH值為-lg[H]。在標(biāo)準(zhǔn)溫度和氣壓下,若水溶液pH=7,則溶液為中性,pH<7時(shí)為酸性,pH>7時(shí)為堿性。例如,甲溶液中氫離子濃度為0.0001mol/l,其pH為-1g 0.0001,即pH=4。已知乙溶液的pH=2,則乙溶液中氫離子濃度為______mol/l。若乙溶液中氫離子濃度是丙溶液的兩千萬倍,則丙溶液的酸堿性為______(填中性、酸性或堿性)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, ,底面是矩形, , , 分別是, 的中點(diǎn).

1)求證:;

2)已知點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn),當(dāng)為何值時(shí),平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形,側(cè)面底面,,.

1證明:;

2設(shè)與平面所成的角為,求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是

(1)求的值;

(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為

i)記為事件,求事件的概率;

ii)在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為大于零的常數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2求函數(shù)在區(qū)間上的最小值;

3求證:對(duì)于任意的時(shí),都有成立

查看答案和解析>>

同步練習(xí)冊(cè)答案