【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的條件下,若△ABC的面積為 ,求a的值.
【答案】
(1)解:在△ABC中,過B作BD⊥AC,則b=AD+CD=acosC+ccosA.
∵b=acosC+3bsin(B+C)=acosC+3bsinA,
∴3bsinA=ccosA,∴ =3tanA= ,
∴tanA= ,A=
(2)解:∵S△ABC= sinA= = ,
∴bc=4 ,
∵c= b,∴b=2,c=2 .
由余弦定理得a2=b2+c2﹣2bccosA=4+12﹣12=4.
∴a=2.
【解析】(1)過B作BD⊥AC,則b=acosC+ccosA,結(jié)合條件可得3bsinA=ccosA,得出tanA;(2)根據(jù)面積公式和 計算b,c,再利用余弦定理得出a.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對數(shù)的底數(shù),a,b∈R).
(Ⅰ)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),證明:當(dāng)a>0時,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下焦點分別為,上焦點到直線的距離為3,橢圓的離心率.
(1)求橢圓的方程;
(2)橢圓,設(shè)過點斜率存在且不為0的直線交橢圓于兩點,試問軸上是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中向量,.
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)在中,、、分別是角、、的對邊,已知,,的面積為,求外接圓半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班在一次個人投籃比賽中,記錄了在規(guī)定時間內(nèi)投進(jìn)個球的人數(shù)分布情況:
進(jìn)球數(shù)(個) | 0 | 1 | 2 | 3 | 4 | 5 |
投進(jìn)個球的人數(shù)(人) | 1 | 2 | 7 | 2 |
其中和對應(yīng)的數(shù)據(jù)不小心丟失了,已知進(jìn)球3個或3個以上,人均投進(jìn)4個球;進(jìn)球5個或5個以下,人均投進(jìn)2.5個球.
(1)投進(jìn)3個球和4個球的分別有多少人?
(2)從進(jìn)球數(shù)為3,4,5的所有人中任取2人,求這2人進(jìn)球數(shù)之和為8的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當(dāng)x>0時,函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC中E,F(xiàn)分別是AC,PC的中點,若EF⊥BF,AB=2,則三棱錐P﹣ABC的外接球的表面積( )
A.4π
B.6π
C.8π
D.12π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com