已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對(duì)數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實(shí)數(shù)的取值范圍;
(1)當(dāng)時(shí),沒有極值;當(dāng)時(shí),存在極大值,且當(dāng)時(shí),;(2)

試題分析:(1)對(duì)求導(dǎo)可得,由極值定義可知要對(duì)進(jìn)行分類討論,當(dāng),函數(shù)無(wú)極值,當(dāng)時(shí),可得當(dāng)存在極大值;(2) 由函數(shù)的導(dǎo)函數(shù),且,得,可知不等式變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052021553713.png" style="vertical-align:middle;" />,求出的取值范圍,可得m的范圍.
解:(1) 函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052021631527.png" style="vertical-align:middle;" />,
當(dāng)時(shí),,上為增函數(shù),沒有極值;當(dāng)時(shí),,
時(shí),;若時(shí),
存在極大值,且當(dāng)時(shí),
綜上可知:當(dāng)時(shí),沒有極值;當(dāng)時(shí),存在極大值,且當(dāng)時(shí), 
(2) 函數(shù)的導(dǎo)函數(shù),
,,
,使得不等式成立,
,使得成立,
對(duì)于,由于,
當(dāng)時(shí),,,
,從而上為減函數(shù),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)(2011•福建)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過(guò)點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對(duì)任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).已知函數(shù)有兩個(gè)零點(diǎn),且
(1)求的取值范圍;
(2)證明隨著的減小而增大;
(3)證明隨著的減小而增大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=1+x-+…+,則下列結(jié)論正確的是(  )
A.f(x)在(0,1)上恰有一個(gè)零點(diǎn)
B.f(x)在(0,1)上恰有兩個(gè)零點(diǎn)
C.f(x)在(-1,0)上恰有一個(gè)零點(diǎn)
D.f(x)在(-1,0)上恰有兩個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=ln x-f′(-1)x2+3x-4,則f′(1)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為小于的常數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,且在點(diǎn)
處的切線方程為.
(1)求的值;
(2)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;  
(3)設(shè)為兩曲線的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為.若取,試判斷當(dāng)直線軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案