【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且a+c=6,b=2, .
(1)求a,c的值;
(2)求sin(A﹣B)的值.
【答案】
(1)解:∵a+c=6①,b=2,cosB= ,
∴由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣ ac=36﹣ ac=4,
整理得:ac=9②,
聯(lián)立①②解得:a=c=3;
(2)解:∵cosB= ,B為三角形的內(nèi)角,
∴sinB= = ,
∵b=2,a=3,sinB= ,
∴由正弦定理得:sinA= = = ,
∵a=c,即A=C,∴A為銳角,
∴cosA= = ,
則sin(A﹣B)=sinAcosB﹣cosAsinB= × ﹣ × =
【解析】(1)利用余弦定理列出關(guān)系式,將b與cosB的值代入,利用完全平方公式變形,求出acb的值,與a+c的值聯(lián)立即可求出a與c的值即可;(2)先由cosB的值,利用同角三角函數(shù)間的基本關(guān)系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,進而求出cosA的值,所求式子利用兩角和與差的正弦函數(shù)公式化簡后,將各自的值代入計算即可求出值.
【考點精析】本題主要考查了兩角和與差的正弦公式和正弦定理的定義的相關(guān)知識點,需要掌握兩角和與差的正弦公式:;正弦定理:才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015秋隨州期末)甲命題:若隨機變量ξ~N(3,σ2),若P(ξ≤2)=0.3,則P(ξ≤4)=0.7.乙命題:隨機變量η﹣B(n,p),且Eη=300,Dη=200,則P=,則正確的是( )
A. 甲正確乙錯誤 B. 甲錯誤乙正確
C. 甲錯誤乙也錯誤 D. 甲正確乙也正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計算出圖案中球與圓柱的體積比;
(2)假設(shè)球半徑.試計算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為招聘新員工設(shè)計了一個面試方案:應(yīng)聘者從道備選題中一次性隨機抽取道題,按照題目要求獨立完成規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學(xué)期望;
(2)請分析比較甲、乙兩人誰的面試通過的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程 | 不喜歡統(tǒng)計課程 | 合計 | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合計 | 30 | 30 | 60 |
(1)判斷是否有99.5%的把握認為喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學(xué)生中抽取6名學(xué)生作進一步調(diào)查,將這6名學(xué)生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.
下面的臨界值表供參考:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩支排球隊進行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是 ,其余每局比賽甲隊獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨立.
(1)分別求甲隊3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對方得1分,求乙隊得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負半軸于點,交軸正半軸于點,為坐標(biāo)原點,設(shè)的面積為,求的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)橢圓C上是否存在點P,使得過點P引圓O:x2+y2=b2的兩條切線PA、PB互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)一天中不同時刻的用電量(萬千瓦時)關(guān)于時間(單位:小時,其中對應(yīng)凌晨0點)的函數(shù)近似滿足 ,如圖是函數(shù)的部分圖象.
(1)求的解析式;
(2)已知該企業(yè)某天前半日能分配到的供電量(萬千瓦時)與時間(小時)的關(guān)系可用線性函數(shù)模型模擬,當(dāng)供電量小于企業(yè)用電量時,企業(yè)必須停產(chǎn).初步預(yù)計開始停產(chǎn)的臨界時間在中午11點到12點之間,用二分法估算所在的一個區(qū)間(區(qū)間長度精確到15分鐘).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com