定義在R上運(yùn)算⊕:x⊕y=
x-5
2-y
,若關(guān)于x的不等式x⊕(x+3-a)>0的解集為A,B=[-3,3],若A∩B=∅,則a的取值范圍
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由x⊕(x+3-a)>0,得
x-5
2-(x+3-a)
>0
,由此利用分類討論思想能求出a的取值范圍.
解答: 解:∵x⊕y=
x-5
2-y
,
∴由x⊕(x+3-a)>0,得
x-5
2-(x+3-a)
>0
,
∴(x-5)[x-(a-1)]<0,
當(dāng)a-1>5,即a>6時(shí),A=(5,a-1),符合條件,故a>6;
當(dāng)a-1=5,即a=6時(shí),(a-5)2<0,A=∅,符合條件,故a=6;
當(dāng)a-1<5,即a<6時(shí),A=(a-1,5),由A∩B=∅,得a-1≥3,即a≥4,故4≤a<6.
綜上,a≥4.
∴a的取值范圍是[4,+∞).
故答案為:[4,+∞).
點(diǎn)評:本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要注意交集的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若log23x=1,則3x+9x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2sina+cosa
sina-3cosa
=9
,則tana等于(  )
A、-4
B、-
1
4
C、
1
4
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S20>0,S21<0,則
S1
a1
S2
a2
,…,
S21
a21
中最大的項(xiàng)為( 。
A、
S8
a8
B、
S9
a9
C、
S10
a10
D、
S11
a11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:{x|x2-8x-20≤0};q:{x|x2-2x-(m2-1)≤0,m>0},若非p是非q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于算法的三種基本邏輯結(jié)構(gòu),下面說法正確的是(  )
A、一個(gè)算法只能含有一種邏輯結(jié)構(gòu)
B、一個(gè)算法最多可以包含兩種邏輯結(jié)構(gòu)
C、一個(gè)算法必須含有上述三種邏輯結(jié)構(gòu)
D、一個(gè)算法可以含有上述三種邏輯結(jié)構(gòu)的任意組合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈(0,2],使x02-ax0+1<0,則¬p為(  )
A、?x0∈(0,2],使x02-ax0+1≥0
B、?x∈(0,2],使x2-ax+1<0
C、?x∈(0,2],使x2-ax+1≥0
D、?x0∉(0,2],使x02-ax0+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,2sinx),
b
=(cosx,-sinx),求函數(shù)f(x)=
a
b
+1.
(1)如果f(x)=
1
2
,求sin4x的值.
(2)如果x∈(0,
π
2
),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時(shí),恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實(shí)數(shù)x的取值范圍是( 。
A、(
1
2
,2)
B、(-2,1)
C、(-1,2)
D、(-1,
1
2

查看答案和解析>>

同步練習(xí)冊答案