14.淘寶賣(mài)家在某商品的所有買(mǎi)家中,隨機(jī)選擇男女買(mǎi)家各25位進(jìn)行調(diào)查,他們的評(píng)分等級(jí)如表:
評(píng)分等級(jí)[0,1](1,2](2,3](3,4](4,5]
男(人數(shù))25954
女(人數(shù))125107
(1)從評(píng)分等級(jí)為(3,4]的人中隨機(jī)選取2人,求恰有1人是女性的概率;
(2)規(guī)定:評(píng)分等級(jí)在[0,3]內(nèi)為不滿意該商品,在(3,5]內(nèi)為滿意該商品.完成下列2×2列聯(lián)表并幫助賣(mài)家判斷:能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為滿意該商品與性別有關(guān)系?
滿意不滿意總計(jì)
16925
81725
總計(jì)242650
附參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P=(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

分析 (1)利用古典概型概率公式,可求恰有1人是女性的概率;
(2)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表;求出k,與臨界值比較,即可得出能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下可以認(rèn)為滿意該商品與性別有關(guān)

解答 解:(1)從評(píng)分等級(jí)為(3,4]的15人中隨機(jī)選取2人共有C152=105種結(jié)果,恰有一人為女性的有C51C101=50種結(jié)果,故所求概率P=$\frac{50}{105}$=$\frac{10}{21}$.…(5分)
(2)列聯(lián)表補(bǔ)充如下:

不滿意滿意合計(jì)
16925
81725
合計(jì)242650
…(8分)
假設(shè)H0:滿意該商品與買(mǎi)家的性別無(wú)關(guān),
則K2=$\frac{50×(9×8-16×17)^{2}}{25×25×24×26}$≈5.128>5.024 …(11分)
因此,在犯錯(cuò)誤的概率不超過(guò)0.025的前提下可以認(rèn)為滿意該商品與性別有關(guān).…(12分)

點(diǎn)評(píng) 本題考查了古典概型,列聯(lián)表,獨(dú)立性檢驗(yàn)的方法等知識(shí),考查了學(xué)生處理數(shù)據(jù)和運(yùn)算求解的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}的通項(xiàng)公式是an=(-1)n-1(n-1),Sn是其前n項(xiàng)和,則S15=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=x3-3x,x∈[0,2],則函數(shù)f(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.“開(kāi)門(mén)大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門(mén),依次按響門(mén)上的門(mén)鈴,門(mén)鈴會(huì)播放一段音樂(lè)(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門(mén)對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱(chēng)與否的人數(shù)如圖所示.
(1)寫(xiě)出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱(chēng)是否與年齡有關(guān);說(shuō)明你的理由;(下面的臨界值表供參考)
 
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取2名幸運(yùn)選手,求2名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\overrightarrow{a}$=($\frac{\sqrt{3}}{3}$sinx,2cosx),$\overrightarrow$=(3,-$\frac{1}{2}$),x∈R.
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,試求f(x)的值域;
(2)若x=$\frac{π}{3}$,且滿足2$\overrightarrow{a}$-$\overrightarrow$與$λ\overrightarrow{a}$+$\overrightarrow$相互垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若2a+2b=1,ab>0,則$\frac{1}{a}$+$\frac{1}$的最小值是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=lg(-x2+2x+15)的定義域?yàn)椋ā 。?table class="qanwser">A.(-5,3)B.(-3,5)C.(-∞,-3)∪(5,+∞)D.(-∞,-5)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ex
(Ⅰ)求函數(shù)g(x)=sinx•f(x)在(0,π)上的單調(diào)區(qū)間;
(Ⅱ)求證:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案