(2005•朝陽區(qū)一模)設(shè)P(x,y)是圖中四邊形內(nèi)的點(diǎn)或四邊形邊界上的點(diǎn)(即x、y滿足的約束條件),則z=2x+y的最大值是
2
2
分析:根據(jù)約束條件畫出的可行域,畫出直線z=2x+y,利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內(nèi)的點(diǎn)B(1,0)時(shí),從而得到z=2x+y的最大值即可.
解答:解:由于z=2x+y,將z最大值轉(zhuǎn)化為y軸上的截距,
當(dāng)直線z=2x+y經(jīng)過點(diǎn)B(1,0)時(shí),z最大,
最大值為:2.
故答案為:2.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單線性規(guī)劃,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2005•朝陽區(qū)一模)圓C:
x=1+cosθ
y=sinθ
為參數(shù))的普通方程為
(x-1)2+y2=1
(x-1)2+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•朝陽區(qū)一模)不等式|3x-2|>4的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•朝陽區(qū)一模)在下列給定的區(qū)間中,使函數(shù)y=sin(x+
π
4
)
單調(diào)遞增的區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•朝陽區(qū)一模)已知直線a、b和平面M,則a∥b的一個(gè)必要不充分條件是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案