3.已知拋物線E:y2=2px(P>0)的準線為x=-1,M,N為直線x=-2上的兩點,M,N兩點的縱坐標之積為-8,P為拋物線上一動點,PN,PM,分別交拋物線于A,B兩點.
(1)求拋物線E的方程;
(2))問直線AB是否過定點,若過定點,請求出此定點;若不過定點,請說明理由.

分析 (1)由-$\frac{p}{2}$=-1得p=2,即可求拋物線E的方程;
(2)設(shè)P(x0,y0)、A(x1,y1)、B(x2,y2),直線AB方程為x=ny+m.聯(lián)立拋物線方程得y2-4ny-4m=0,則y1y2=-4m,求出M,N的縱坐標,利用條件,即可得出直線AB是否過定點.

解答 解:(1)由-$\frac{p}{2}$=-1得p=2,
故拋物線方程y2=4x..…(4分)
(2)設(shè)P(x0,y0)、A(x1,y1)、B(x2,y2),直線AB方程為x=ny+m.
聯(lián)立拋物線方程得y2-4ny-4m=0,則y1y2=-4m..…(6分)
由直線PA的斜率$\frac{4}{{y}_{1}+{y}_{0}}$,
則直線PA的方程:y-y0=$\frac{4}{{y}_{1}+{y}_{0}}$(x-x0),
又y02=4x0,即直線PA的方程:4x-(y1+y0)y+y1y0=0,
令x=-2,得yM=$\frac{{y}_{1}{y}_{0}-8}{{y}_{1}+{y}_{0}}$,同理yN=$\frac{{y}_{2}{y}_{0}-8}{{y}_{2}+{y}_{0}}$..…(8分)

yMyN=$\frac{{y}_{1}{y}_{0}-8}{{y}_{1}+{y}_{0}}$•yN=$\frac{{y}_{2}{y}_{0}-8}{{y}_{2}+{y}_{0}}$=-8,
整理得(y1y2+8)(y02+8)=0.
則y1y2=-8,即-4m=-8,∴m=2.
故直線PA的方程:x=ny+2,即直線AB過定點(2,0)..…(12分)

點評 本題考查拋物線的方程,考查直線與拋物線的位置關(guān)系,考查直線過定點,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知命題p:方程$\frac{{x}^{2}}{12-m}$+$\frac{{y}^{2}}{m-4}$=1表示焦點在x軸上的橢圓;命題q:點(m,3)在圓(x-10)2+(y-1)2=13內(nèi).若p∨q為真命題,p∧q為假命題,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,則tan β=( 。
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市對所有高校學(xué)生進行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績.
(1)計算這10名學(xué)生的成績的均值和方差;
(2))給出正態(tài)分布的數(shù)據(jù):P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估計從全市隨機抽取一名學(xué)生的成績在(76,97)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面四邊形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,則四邊形ABCD的面積為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知(x+2)n=a0+a1(x-1)+a2(x-1)2…+an(x-1)n(n∈N*).
(1)求a0及Sn=$\sum_{i=1}^{n}$ai
(2)試比較Sn與(n-2)3n+2n2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={1,2},B={1,2,4},C={1,4,6},則(A∩B)∪C=(  )
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,則z=-2x+y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣的方法(按A類、B類分兩層)從該工廠的工人中抽取100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)),結(jié)果如表.
表1:A類工人生產(chǎn)能力的頻數(shù)分布表
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150)
人數(shù)8x32
表2:B類工人生產(chǎn)能力的頻數(shù)分布表
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150)
人數(shù)6y2718
(1)確定x,y的值;
(2)完成下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.001的前提下認為工人的生產(chǎn)能力與工人的類別有關(guān)系?
生產(chǎn)能力分組
工人類別
[110,130)[130,150)總計
A類工人20525
B類工人304575
總計5050100
(3)工廠規(guī)定生產(chǎn)零件數(shù)在[130,140)的工人為優(yōu)秀員工,在[140,150)的工人為模范員工,那么在樣本的A類工人中的優(yōu)秀員工和模范員工中任意抽2人進行示范工作演示,試寫出所抽的模范員工的人數(shù)X的分布列和期望.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案