(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;

(Ⅲ) 證明對一切都有成立.

 

【答案】

(Ⅰ)

;

(Ⅱ)。

(Ⅲ) 見解析。

【解析】

試題分析:(Ⅰ)

…………4分

(Ⅱ)由題意知

,

,故..          …………8分

(Ⅲ) 等價證明

由(Ⅰ)知

.。...          …………12分

考點:本題主要考查導數(shù)的應用,研究函數(shù)單調(diào)性、確定函數(shù)最值、證明不等式。

點評:利用導數(shù)研究函數(shù)單調(diào)性、確定函數(shù)最值、證明不等式,是導數(shù)的基本應用。這類題解法思路明確,需要細心細致地計算。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市高三下學期第二次質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

.(本小題滿分12分)

已知函數(shù)f(x)=ln+mx2(m∈R)

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點,且a>b>0, 為f(x)的導函數(shù),求證:

(III)求證

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市高三下學期第二次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù)f(x)=ln+mx2(m∈R)

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試理科數(shù)學試卷 題型:解答題

(本小題滿分12分)

已知函的部分圖象如圖所示:

(1)求的值;

(2)設,當時,求函數(shù)的值域.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

 已知函的部分圖象如圖所示:

(1)求的值;

(2)設,當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

 已知函的部分圖象如圖所示:

(1)求的值;

(2)設,當時,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案