【題目】已知一定點(diǎn),及一定直線,以動(dòng)點(diǎn)為圓心的圓過點(diǎn),且與直線相切

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,為線段的中點(diǎn)求證:且直線恒過定點(diǎn)

【答案】(1)動(dòng)點(diǎn)的軌跡的方程為;(2)見解析.

【解析】

分析:(1)利用直接法,即可求動(dòng)點(diǎn)的軌跡的方程;

(2)依題意可設(shè),,∴切線同理可得切線PB,故可得到,從而整理可得答案.

詳解:(1) ∵圓過點(diǎn),且與直線相切,

∴點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,

∴點(diǎn)的軌跡是以為焦點(diǎn),以直線為準(zhǔn)線的一拋物線

,

動(dòng)點(diǎn)的軌跡的方程為.

(2)依題意可設(shè),

,∴,∴,

∴切線的斜率

∴切線,

同理可得切線的斜率,,

,∴,

故方程有兩根,,∴,

,∴,

為線段的中點(diǎn),∴,

又由

,同理可得

故直線的方程為,故直線恒過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,曲線C由以原點(diǎn)為圓心,半徑為2的半圓和中心在原點(diǎn),焦點(diǎn)在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)寫出曲線C的極坐標(biāo)方程;

(2)已知射線與曲線C交于點(diǎn)M,點(diǎn)N為曲線C上的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為山腳兩側(cè)共線的3點(diǎn),在山頂處測(cè)得3點(diǎn)的俯角分別為,計(jì)劃沿直線開通穿山隧道,為求出隧道的長(zhǎng)度,你認(rèn)為還需要直接測(cè)量出中哪些線段的長(zhǎng)度?根據(jù)條件,并把你認(rèn)為需要測(cè)量的線段長(zhǎng)度作為已知量,寫出計(jì)算隧道長(zhǎng)度的運(yùn)算步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上.

)求橢圓的標(biāo)準(zhǔn)方程.

)是否存在斜率為的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn),時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,,是拋物線上的兩點(diǎn),是坐標(biāo)原點(diǎn),且.

(1)若,求的面積;

(2)設(shè)是線段上一點(diǎn),若的面積相等,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率為,過其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案