若雙曲線的一條漸近線方程是y=-
3
4
x,且過點(diǎn)(2,3),求雙曲線的標(biāo)準(zhǔn)方程.
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,雙曲線的一條漸近線方程為y=-
3
4
x,可設(shè)雙曲線方程為9x2-16y2=λ(λ≠0),又由雙曲線過點(diǎn)P(2,3),將點(diǎn)P的坐標(biāo)代入可得λ的值,進(jìn)而可得答案.
解答: 解:根據(jù)題意,雙曲線的一條漸近線方程為y=-
3
4
x,
設(shè)雙曲線方程為9x2-16y2=λ(λ≠0),
∵雙曲線過點(diǎn)P(2,3),
∴36-144=λ,即λ=-108.
∴所求雙曲線方程為
4y2
27
-
x2
12
=1
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,需要學(xué)生熟練掌握已知漸近線方程時(shí),如何設(shè)出雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x
的圖象和其在點(diǎn)(-1,1)處的切線與x軸所圍成區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別F1、F2,過點(diǎn)F1的直線交橢圓C于A,B兩點(diǎn),若 
AF1
=3
F1B
,且cos∠AF2B=
3
5
,則橢圓C的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
3
x
的圖象與直線y=x+b交于A、B兩點(diǎn),則當(dāng)線段AB的長度取得最小值時(shí),b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD中,AB∥CD,且AB=2CD,對(duì)角線AC、DB相交于點(diǎn)O.若
AD
=
a
,
AB
=
b
,
OC
=(  )
A、
a
3
-
b
6
B、
a
3
+
b
6
C、
2
a
3
+
b
3
D、
2
a
3
-
b
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程(
1
4
)x+(
1
2
)x
+a=0有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若2Sn=3an-2n(n∈N*),則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某地一天中6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b(其中ω>0,
π
2
<φ<π),則估計(jì)中午12時(shí)的溫度近似為( 。
A、30℃B、27℃
C、25℃D、24℃

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

讀如圖程序,若輸入x=48,則輸出的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案