12.若函數(shù)f(x)=lnx-ax在區(qū)間(1,+∞)上單調(diào)遞減,則a的取值范圍是( 。
A.[1,+∞)B.[-1,+∞)C.(-∞,1]D.(-∞,-1]

分析 求導(dǎo)數(shù),利用函數(shù)f(x)在區(qū)間(1,+∞)上遞減,可得f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立,即可求出實(shí)數(shù)a的取值范圍.

解答 解:∵f(x)=lnx-ax(a∈R),
∴f′(x)=$\frac{1}{x}$-a,
∵函數(shù)f(x)在區(qū)間(1,+∞)上遞減,
∴f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立,
∴a≥1,
故選:A.

點(diǎn)評(píng) 利用導(dǎo)數(shù)可以解決函數(shù)的單調(diào)性問題,本題解題的關(guān)鍵是轉(zhuǎn)化為f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

求值____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若不等式ax2+bx+2<0的解集為{x|$\frac{1}{3}$$<x<\frac{1}{2}$},則a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)P為拋物線上位于第一象限的點(diǎn),過點(diǎn)P作C的準(zhǔn)線的垂線,垂足為M,若$\overrightarrow{FP}$在$\overrightarrow{FM}$方向上的投影為$\sqrt{2}$,則△FPM的外接圓的方程為(  )
A.(x-1)2+(y-1)2=1B.(x-1)2+(y-2)2=4C.x2+(y-2)2=5D.x2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\vec a=(2,-1),{\;}^{\;}$$\vec b=(3,m),\vec a⊥\vec b時(shí)m的值為$( 。
A.$-\frac{3}{2}$B.$-\frac{2}{3}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)A是拋物線y2=2px(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),以|FA|為半徑的圓交準(zhǔn)線于B,C兩點(diǎn),△FBC為正三角形,且△ABC的面積是$\frac{128}{3}$,則拋物線的方程是( 。
A.y2=12xB.y2=14xC.y2=16xD.y2=18x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求當(dāng)a為何實(shí)數(shù)時(shí),復(fù)數(shù)z=(a2-2a-3)+(a2+a-12)i滿足:
(Ⅰ)z為實(shí)數(shù);
(Ⅱ)z為純虛數(shù);
(Ⅲ)z位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,橢圓E的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別是橢圓的右頂點(diǎn)和上頂點(diǎn),點(diǎn)M在線段AB上,滿足BM=2MA,直線OM的斜率為$\frac{1}{4}$.
(1)求橢圓E的離心率e;
(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為$\frac{11}{5}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{3}$,直線x+y=2與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l1過點(diǎn)F1且與橢圓C的長(zhǎng)軸垂直,動(dòng)直線l2與直線l1垂直,垂足為P,線段PF2的垂直平分線與直線l2交于點(diǎn)M,記M的軌跡為曲線D,設(shè)曲線D與x軸交于點(diǎn)Q,不同的兩個(gè)動(dòng)點(diǎn)R,S在曲線D上,且滿足$\overrightarrow{QR}$•$\overrightarrow{QS}$=5.
(i)求證:直線RS恒過定點(diǎn);
(ii)當(dāng)直線RS與x軸正半軸相交時(shí),求△QRS的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案